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Nonsmooth optimization in machine learning

Many machine learning problems write as an optimization problem.

Minimize F(w)

weRP
First-order methods, e.g. gradient method are really popular

W1 = WE — akVF('wk) ‘
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Nonsmooth optimization in machine learning

Many machine learning problems write as an optimization problem.

Minimize F(w)

weRP
First-order methods, e.g. gradient method are really popular

W41 = Wk — ak(VF(wk) -+ Ek;) ‘

e Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
® Can be adapted to handle massive training sets (Stochastic algorithms)

Observation: In many practical situations, F' is nonconvex and nonsmooth.
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F' is often nonsmooth!

Activation functions in
Deep Learning

relu

Max value functions

Min max problems
Robust learning

Sorting
operations

a5(1) < Ao(2) < oo < Qo(n)

Median
Quantiles

Solution paths

B(N) € argmin,{| X8 — Y| + A8}

Bi-level optimization
Hyperparameter selection
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Neural network training

min IE(z,y)NP [(h(w? SC) - y)z]

weRP

h(w, z) = relu(Arelu(A,_; ... relu(

relu /

Bi-level optimization
Ex: Hyperparameter selection

AERP

quleiﬂgp F(w,y) min  Criterion(8(\))
| B()) € argming{| X — Y|+ A8} |

y € argmin g(w, ).
fecC
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Outline

Observation: a gap between nonsmooth opt. notions and practice in ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.

- The classical notions for nonsmooth functions (Clarke subgradient) do not
explain this practice.
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- The classical notions for nonsmooth functions (Clarke subgradient) do not
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives
We focus on generalized derivatives called Conservative derivatives, which

justifies automatic differentiation.

We propose two extensions
® Differentiation under nonsmooth expectation — stochastic methods.

® Nonsmooth Implicit differentiation — gradient methods for bi-level problems.
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Observation: a gap between nonsmooth opt. notions and practice in ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.

- The classical notions for nonsmooth functions (Clarke subgradient) do not
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called Conservative derivatives, which
justifies automatic differentiation.

We propose two extensions
e Differentiation under nonsmooth expectation — stochastic methods.

® Nonsmooth Implicit differentiation — gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using ODE approaches, we show the convergence of nonsmooth stochastic
optimization algorithms as implemented in practice.
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Nonsmooth nonconvex optimization

Classical concepts vs machine learning practice




A glance at the differentiable setting

Gradient method, o, < 0, a, — 0

‘wk_H = Wk — OszF('wk). ‘

1. Descent mechanism: the method approximates gradient curves

w(t) = =VF(w(t)) /\w ;F/@
® [ decreases along w 2 di

-5

® w(t) accumulates around critical
points {w : 0 =VF(w)}

)
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e F decreases along w Wi N\ °e
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® w(t) accumulates around critical
points {w : 0 =VF(w)}

2. VF can be computed by calculus rules: V(f +¢g) =V f+ Vg,
Jac(uov) = (Jacuowv)Jacw ...
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A glance at the differentiable setting

Gradient method, o, < 0, a, — 0

‘wk_H = Wk — akVF(wk). ‘

1. Descent mechanism: the method approximates gradient curves

() = ~VF(w(t) s
® [ decreases along w vy )

-5

® w(t) accumulates around critical
points {w : 0 =VF(w)}

2. VF can be computed by calculus rules: V(f +¢g) =V f+ Vg,
Jac(uov) = (Jacuowv)Jacw ...

What if I is nonsmooth?
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The Clarke subgradient: a gradient for nonsmooth functions

Let F: R™ — R be locally Lipschitz, differentiable on diff p of full Lebesgue
measure.

Clarke subgradient 0°¢

k— 400

O°F(x) = conv{ lim VF(zy):ap €diffp,zp,  — x}
k—4o00

(extends to Jacobians)
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The Clarke subgradient: a gradient for nonsmooth functions

Let F: R™ — R be locally Lipschitz, differentiable on diff p of full Lebesgue
measure.

Clarke subgradient 0°

O°F(x) = conv{ lim VF(zy):ap €diffp,zp,  — x}
k—4o00 k

—+o0

(extends to Jacobians)

O°F is graph-closed, locally bounded, convex-valued.
— existence of the continuous time dynamics w € —9°F(w).

— subgradient method w11 € wy — ar0°F (wy) as ODE discretization.
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Descent along curves

Do we have descent along w € —0°F(w)?

Not in general. There exist Lipschitz functions F such that 9°F = B(0, 1)
everywhere.

But often in practice!
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Stratification of “usual” (definable) functions

Key idea: “Simple” compositional structure leads to a stratified landscape

Piecewise affine functions: functions involving affine constraints and functions
(if, else, +, -, <, >) decompose into affine pieces
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Stratification of “usual” (definable) functions

Key idea: “Simple” compositional structure leads to a stratified landscape

Piecewise affine functions: functions involving affine constraints and functions
(if, else, +, -, <, >) decompose into affine pieces

fenorm

Definable functions: functions involving elementary operations
(if, else, +, -, X, exp, log), decompose into smooth manifolds
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Usual functions are path-differentiable

Subgradient flow ~ Gradient flows along stratification manifolds

W = -V, F(w)
W= —V,,F(w)
= -V, F(w)
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Usual functions are path-differentiable

Subgradient flow ~ Gradient flows along stratification manifolds

w=—V,, F(w)
= -V, F(w)
W = =V, F(w)

Path differentiability (descent along curves) Valadier 1989

F (locally Lipschitz) is called path-differentiable if for all absolutely continuous curve ~, for

almost all ¢,
(F o) (t) = (°F(v(t),¥(t))

In this case F' decreases along subgradient curves

Definable functions are path differentiable | Bolte et al. 2007, Davis et al. 2019
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® The Clarke subgradient provides descent for path-differentiable functions.

— Can we easily compute elements of the Clarke subgradient? In particular,
does automatic differentiation output Clarke subgradients?

® Functions implemented in practice are definable, hence they are
path-differentiable.

— What can we say outside these functions, for instance for expectations
F(w) = Eep[f(w,)]?
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What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

if
relu(z) = {x, >0 —  relu/(z) = {

0, else. autodiff

1, ifz>0
0, else.
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What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

if
relu(z) = {x, >0 —  relu/(z) = {

1, ifz>0

0, else. autodiff 0, else.

What about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule to Clarke derivatives.

it f(w)=grog—10...0g1(w)
then  autodiff,, f(w) € 9°g,(gr_10...0g1(w))T

x Jac® gr_1(gr—20...0g1(w)) x ... x Jac, g1 (w).
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What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

if
relu(z) = {x, >0 —  relu/(z) = {

0, else. autodiff

1, ifz>0
0, else.

What about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule to Clarke derivatives.

it f(w)=grog—10...0g1(w)
then  autodiff,, f(w) € 9°g,(gr_10...0g1(w))T

x Jac® gr_1(gr—20...0g1(w)) x ... x Jac, g1 (w).

But do calculus rules apply to Clarke derivatives?

No.
® (Sum rule) 9°(f +g) C 0°f + 0°
® (Composition rule) Jac®(F o G) € conv Jac® F(G) Jac® G
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Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

14/27



Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F' = E¢p[f(-,£)] we may
sample V., f(+,€), € ~ P to have a noisy estimate of

Eenp[Vuw f(+,6)] = VF (Differentiation under integral)

— Practice: f is nonsmooth, autodiff,, f(w, &) is sampled instead of V,, f(w,¢).
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Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F' = E¢p[f(-,£)] we may
sample V., f(+,€), € ~ P to have a noisy estimate of

Eenp[Vuw f(+,6)] = VF (Differentiation under integral)
— Practice: f is nonsmooth, autodiff,, f(w, &) is sampled instead of V,, f(w,¢).
Example 2. Implicit differentiation. H(z,y) = 0, H continuously

differentiable. How to differentiate y w.r.t. x7?

-1
% _ _ [8H} OH (Implicit differentiation)

dgr  |dy| O«

— Practice: H is optimality conditions, hence nonsmooth. 0H is replaced by
autodiff H.
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Nonsmooth calculus
with conservative derivatives

“

VFjpm () = projy D(x)




Conservative gradients, Bolte & Pauwels (2021)

Let F': R™ — R be locally Lipschitz, and let D : R™ = R"™ be a set-valued map.
D is a conservative gradient for F if

- It generates descent trajectories

For all absolutely continuous curve
~v:[0,1] — R™,

S(For)(t) = (A1), W € Dl(1),

for almost all ¢ € [0, 1].
(extends to Jacobians)

F' decreases along 4 € —D(7)
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Conservative gradients, Bolte & Pauwels (2021)

Let F': R™ — R be locally Lipschitz, and let D : R® = R™ be a set-valued map.
D is a conservative gradient for F' if

- It generates descent trajectories

For all absolutely continuous curve
~v:[0,1] — R™,

S(Fom)(®) = 0,30, Yo e D),

for almost all ¢ € [0, 1].

(extends to Jacobians) I W
|m(@) = projy D(z

F decreases along ¥ € —D(v)

- Existence of the flow 4 € —D(y):

D is graph-closed, nonempty (convex) valued, locally bounded.
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Conservative calculus

- Clarke subgradient of path diff. If F' is path differentiable, then O°F is conservative.

- Sum rule Let Dy, D, be conservative gradients for f and g, Dy + D, is conservative
gradient for f + g.

- Chain rule Let J,, J, be conservative Jacobians for u and v. Jy(v).J, is conservative
Jacobian for uw o v. — automatic differentiation outputs conservative Jacobians.

- Calculus to regularity If F' has a conservative gradient, then it is path differentiable.
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Conservative calculus

- Clarke subgradient of path diff. If F' is path differentiable, then O°F is conservative.

- Sum rule Let Dy, D, be conservative gradients for f and g, Dy + D, is conservative
gradient for f + g.

- Chain rule Let J,, J, be conservative Jacobians for u and v. Jy(v).J, is conservative
Jacobian for uw o v. — automatic differentiation outputs conservative Jacobians.

- Calculus to regularity If F' has a conservative gradient, then it is path differentiable.

An extension of the conservative calculus:
Integral rule of conservative gradients

“Differentiating” under integral/expectation F' = E¢.p[f(+,&)]
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Integral rule: motivation in stochastic optimization

Stochastic minimization
Consider

F(w) :=Eeup[f(+ )]
Under mild conditions, one can differentiate under E:

VF = ngP[wa<'a§)]

First-order sampling: Sample £ ~ P, V,, f(w,§) ~ VF(w)
— Stochastic gradient method: wy11 = wi — @V, f (Wi, &)
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Integral rule: motivation in stochastic optimization

Stochastic minimization
Consider

F(w) :=Eeop[f(-€)]

Under mild conditions, one can differentiate under E:

VF = E¢p[Vuw f(+ )]

First-order sampling: Sample £ ~ P, V,, f(w,§) ~ VF(w)
— Stochastic gradient method: wy11 = wi — @V, f (Wi, &)

In practice, f(+,&) is nonsmooth, and

O°F C Eenpl05f(-,€)]

But we have access to a conservative gradient of f(-,&), D(-,§), e.g., autodiff.

Question: What is the expectation E¢.p[D(-,§)]?

18/27



Integral rule of conservative gradient

Theorem (Bolte, L., Pauwels 2022)

If D(-,&) is conservative gradient for f(-, &),
then E¢p[D(-,&)] is a conservative gradient for F.
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Integral rule of conservative gradient

Theorem (Bolte, L., Pauwels 2022)

If D(-, &) is conservative gradient for f(,¢),
then E¢p[D(-,&)] is a conservative gradient for F.

Assumptions:

1. (Measurability assumptions) ...

2. (Boundedness assumption) For all compact subset C' C RP, there exists an integrable function
kS — R such that for all

(2,5) € C x 8, |D(x,5)]| < (s)
where for (z,s) € R? x S, ||D(z,s)|| := sup |yl
yeD(x,s
Main outcomes:

e Justifies first-order sampling in practical implementations: e.g. autodiff or
implicit differentiation.

® F (expectation) is path-differentiable, under simple assumptions.
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Many other applications of conservative calculus! Differentiating max functions,
ODE solutions, algorithmic recursions, function approximations

® Pauwels, Conservative Parametric Optimality and the Ridge Method for Tame Min-Max
Problems (2023)

® Marx-Pauwels, Path differentiability of ODE flows (2022)
® Bolte-Pauwels-Vaiter, Automatic differentiation of nonsmooth iterative algorithms (2022)
® |utzeler-Pauwels-Vaiter, Derivatives of SGD (2024)

® Schechtman, The gradient's limit of a definable family of functions is a conservative
set-valued field (2024)
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Nonsmooth implicit differentiation formula.

Bolte, L., Pauwels, Silveti-Falls (2021)
Setting: y € argmin, g(z, 0) written as H(z,y) =0

How to differentiate y with respect to x?

Applications: Bi-level opt., optimization layers, hyperparameter selection ...

H(z,y) =0 Glx)=y H smooth:

G [BH]*I oH

J oz |oy| Oz

ah

H(z,y) =0 G(z)=y H nonsmooth, path differentiable:

\ Jg(a:) = {-B7'A|[A B] € Autodiff H(z, G(cc))}

is a conservative Jacobian

™
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Analysis of the stochastic subgradient method
“as implemented practice”




Nonsmooth stochastic gradient method

We consider the problem
Mini%]ize F(w) :=E¢op[f(w,§)],
weRpP

We study a nonsmooth stochastic gradient method

W41 € wi — axD(wg, k). (1)

For £ € R™, D(-,&) is a conservative gradient for f(-,£) — encompasses practical
calculus: autodiff, implicit differentiation ...

23/27



Nonsmooth stochastic gradient method

We consider the problem
I\/Iini%]ize F(w) :=E¢op[f(w,§)],
weRpP

We study a nonsmooth stochastic gradient method

W41 € wi — axD(wg, k). (1)

For £ € R™, D(-,&) is a conservative gradient for f(-,£) — encompasses practical
calculus: autodiff, implicit differentiation ...

Integral rule: (1) writes

Wr41 € W, — ak(Dp(wk) + 514:)7

where Dp = E¢.p[D(-,§)] is conservative gradient for F', ¢ has zero conditional
mean w.r.t. wg.
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The ODE approach

Key idea: Studying algorithms as ODE discretizations.

Wg41 — Wk

= —Dp(wy) + €x s ¥ € —Dr(y) (2)
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The ODE approach

Key idea: Studying algorithms as ODE discretizations.

S = De(w) ta = 4€-Dr(y) (2)
Interpolated process w:
W
[ 3 ‘ e ®
. v,

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

w : Ry — RP is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim inf sup |lw(t+s)—~(s)|| =0.

t—o0 v solution o [0,T]
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The ODE approach

Key idea: Studying algorithms as ODE discretizations.

S = De(w) ta = 4€-Dr(y) (2)
Interpolated process w:
W
[ 3 ‘ e ®
. v,

w : Ry — RP is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim inf sup |lw(t+s)—~(s)|| =0.

t—o0 v solution o [0,T]

e €D o
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Convergence results

F decreases along ¥ € —Dp(7) (conservative gradient)
+ wis APT
= Asymptotic descent

Convergence results

® Essential accumulation points w* satisfy 0 € Dp(w™*).

® Under definable assumptions on P, {F(w) : 0 € Dp(w)} has empty interior:
F(wy,) converges and all accumulation points satisfy 0 € Dp(w*).
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Convergence results

F decreases along ¥ € —Dp(7) (conservative gradient)
+ wis APT
= Asymptotic descent

Convergence results
® Essential accumulation points w* satisfy 0 € Dp(w™*).
® Under definable assumptions on P, {F(w) : 0 € Dp(w)} has empty interior:
F(wy) converges and all accumulation points satisfy 0 € Dp(w™).

Essential accumulation point w* is such that for all open U > w*,

Fyail
. zi:() Qi lw,eU
limsup == ——

k—o0 Zi,:O (07}
Proportion of time spent around w*

>0 as.
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Convergence results

F decreases along ¥ € —Dp(7) (conservative gradient)
+ wis APT
= Asymptotic descent

Convergence results

® Essential accumulation points w* satisfy 0 € Dp(w™*).

® Under definable assumptions on P, {F(w) : 0 € Dp(w)} has empty interior:
F(wy,) converges and all accumulation points satisfy 0 € Dp(w*).

Essential accumulation point w* is such that for all open U > w*,

>0 as.

Proportion of time spent around w*

Assumptions
® (wg)ren bounded a.s.
° ak>0,2ak:oo,2ai<oo

® ||D(w,s)|| < k(s)yY(w), Kk square integrable, ¥ locally bounded.
25/27



Conclusion and perspectives

- Conservative derivatives provide a justification to many implementations of
“gradient” method

® nonsmooth automatic differentiation,
® Differentiation under integral — nonsmooth stochastic algorithms

® Implicit differentiation — can be applied to bi-level programming,
optimization layers, implicit layers
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Conclusion and perspectives

- Conservative derivatives provide a justification to many implementations of
“gradient” method

® nonsmooth automatic differentiation,

¢ Differentiation under integral — nonsmooth stochastic algorithms

¢ |Implicit differentiation — can be applied to bi-level programming,
optimization layers, implicit layers

® many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves — ODE approach — convergence results.

Importance of “rigidity” (definability):
® Chain rule of simple (definable) functions
® Definable P — stronger convergence
® Avoidance of artefacts, beyond the general criticality notion 0 € Dp:
“For most initialization wq and stepsizes, accumulation points satisfy
0 € O°F(w*)."
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A good property may persists “outside” a class of nice objects:
"E¢p[D(-,€)] is a conservative gradient”

potentially pathological simple, rigid
W we H(w

f(w7w7y) = (<w7w> - y)2
Measures ~ OPE q @

Risks /

Eg-p [£(w,)]
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A good property may persists “outside” a class of nice objects:
"E¢p[D(-,€)] is a conservative gradient”

potentially pathological simple, rigid
W € H(w) flw,z,y) = (z,w) —y)*

A
Measures ~ OPE .

Risks /

Bewp [f(w, )] s

N relu

How far can the analysis benefit from this?
® Convergence theory: constant (large?) steps, complexity...

® Algorithmic extensions: constraints, biased oracle; beyond vanishing stepsizes: adaptive
algorithms; non i.i.d. samples, ...

Can we design algorithms based on this nice geometry?
When nonsmoothness is “useful” (robustness, bi-level opt...).
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A good property may persists “outside” a class of nice objects:
"E¢p[D(-,€)] is a conservative gradient”

potentially pathological simple, rigid
W € H(w) flw,z,y) = (z,w) —y)*

A
Measures ~ OPE .

Risks /

Bewp [f(w, )] s

N relu

How far can the analysis benefit from this?
® Convergence theory: constant (large?) steps, complexity...

® Algorithmic extensions: constraints, biased oracle; beyond vanishing stepsizes: adaptive
algorithms; non i.i.d. samples, ...

Can we design algorithms based on this nice geometry?
When nonsmoothness is “useful” (robustness, bi-level opt...).

Thank you!!!
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