
Nonsmooth calculus and optimization for machine
learning: first-order sampling and implicit differentiation

F

x

F (x)

x1 x2

∂c
F (x1)

∂c
F (x2)

Tam Le (PhD at TSE and Université Toulouse Capitole, funded by ANITI)

advised by Jérôme Bolte (TSE) and Edouard Pauwels (TSE),
joint work with Antonio Silveti-Falls (now CentraleSupelec)



Nonsmooth optimization in machine learning

Many machine learning problems write as an optimization problem.

Minimize
w∈Rp

F (w)

First-order methods, e.g. gradient method are really popular

wk+1 = wk − αk∇F (wk)

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)

• Can be adapted to handle massive training sets (Stochastic algorithms)

Observation: In many practical situations, F is nonconvex and nonsmooth.

F

x

F (x)

2 / 27



Nonsmooth optimization in machine learning

Many machine learning problems write as an optimization problem.

Minimize
w∈Rp

F (w)

First-order methods, e.g. gradient method are really popular

wk+1 = wk − αk(∇F (wk) + ϵk)

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
• Can be adapted to handle massive training sets (Stochastic algorithms)

Observation: In many practical situations, F is nonconvex and nonsmooth.

F

x

F (x)

2 / 27



Nonsmooth optimization in machine learning

Many machine learning problems write as an optimization problem.

Minimize
w∈Rp

F (w)

First-order methods, e.g. gradient method are really popular

wk+1 = wk − αk(∇F (wk) + ϵk)

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
• Can be adapted to handle massive training sets (Stochastic algorithms)

Observation: In many practical situations, F is nonconvex and nonsmooth.

F

x

F (x)

2 / 27



F is often nonsmooth!

Activation functions in
Deep Learning

Polyhedral
constraints

Max value functions Solution paths

Sorting
operations

Median
Quantiles

Bi-level optimization
Hyperparameter selection

Regularization
Sparsification

Min max problems
Robust learning

3 / 27



Neural network training

Bi-level optimization
Ex: Hyperparameter selection

4 / 27



Outline

Observation: a gap between nonsmooth opt. notions and practice in ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.
- The classical notions for nonsmooth functions (Clarke subgradient) do not
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called Conservative derivatives, which
justifies automatic differentiation.

We propose two extensions

• Differentiation under nonsmooth expectation → stochastic methods.

• Nonsmooth Implicit differentiation → gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using ODE approaches, we show the convergence of nonsmooth stochastic
optimization algorithms as implemented in practice.

5 / 27



Outline

Observation: a gap between nonsmooth opt. notions and practice in ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.
- The classical notions for nonsmooth functions (Clarke subgradient) do not
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called Conservative derivatives, which
justifies automatic differentiation.

We propose two extensions

• Differentiation under nonsmooth expectation → stochastic methods.

• Nonsmooth Implicit differentiation → gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using ODE approaches, we show the convergence of nonsmooth stochastic
optimization algorithms as implemented in practice.

5 / 27



Outline

Observation: a gap between nonsmooth opt. notions and practice in ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.
- The classical notions for nonsmooth functions (Clarke subgradient) do not
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called Conservative derivatives, which
justifies automatic differentiation.

We propose two extensions

• Differentiation under nonsmooth expectation → stochastic methods.

• Nonsmooth Implicit differentiation → gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using ODE approaches, we show the convergence of nonsmooth stochastic
optimization algorithms as implemented in practice.

5 / 27



Nonsmooth nonconvex optimization

Classical concepts vs machine learning practice



A glance at the differentiable setting

Gradient method, αk < 0, αk → 0

wk+1 = wk − αk∇F (wk).

1. Descent mechanism: the method approximates gradient curves

ẇ(t) = −∇F (w(t))

• F decreases along w

• w(t) accumulates around critical
points {w : 0 = ∇F (w)}

2. ∇F can be computed by calculus rules: ∇(f + g) = ∇f +∇g,
Jac(u ◦ v) = (Jacu ◦ v) Jac v . . .

What if F is nonsmooth?

7 / 27



A glance at the differentiable setting

Gradient method, αk < 0, αk → 0

wk+1 = wk − αk∇F (wk).

1. Descent mechanism: the method approximates gradient curves

ẇ(t) = −∇F (w(t))

• F decreases along w

• w(t) accumulates around critical
points {w : 0 = ∇F (w)}

2. ∇F can be computed by calculus rules: ∇(f + g) = ∇f +∇g,
Jac(u ◦ v) = (Jacu ◦ v) Jac v . . .

What if F is nonsmooth?

7 / 27



A glance at the differentiable setting

Gradient method, αk < 0, αk → 0

wk+1 = wk − αk∇F (wk).

1. Descent mechanism: the method approximates gradient curves

ẇ(t) = −∇F (w(t))

• F decreases along w

• w(t) accumulates around critical
points {w : 0 = ∇F (w)}

2. ∇F can be computed by calculus rules: ∇(f + g) = ∇f +∇g,
Jac(u ◦ v) = (Jacu ◦ v) Jac v . . .

What if F is nonsmooth?

7 / 27



The Clarke subgradient: a gradient for nonsmooth functions

Let F : Rn → R be locally Lipschitz, differentiable on diffF of full Lebesgue
measure.

Clarke subgradient ∂c

∂cF (x) = conv

{
lim

k→+∞
∇F (xk) : xk ∈ diffF , xk −→

k→+∞
x

}
(extends to Jacobians)

F

x

F (x)

x1 x2

∂c
F (x1)

∂c
F (x2)

∂cF is graph-closed, locally bounded, convex-valued.
→ existence of the continuous time dynamics ẇ ∈ −∂cF (w).
→ subgradient method wk+1 ∈ wk − αk∂

cF (wk) as ODE discretization.

8 / 27



The Clarke subgradient: a gradient for nonsmooth functions

Let F : Rn → R be locally Lipschitz, differentiable on diffF of full Lebesgue
measure.

Clarke subgradient ∂c

∂cF (x) = conv

{
lim

k→+∞
∇F (xk) : xk ∈ diffF , xk −→

k→+∞
x

}
(extends to Jacobians)

F

x

F (x)

x1 x2

∂c
F (x1)

∂c
F (x2)

∂cF is graph-closed, locally bounded, convex-valued.
→ existence of the continuous time dynamics ẇ ∈ −∂cF (w).
→ subgradient method wk+1 ∈ wk − αk∂

cF (wk) as ODE discretization.
8 / 27



Descent along curves

Do we have descent along ẇ ∈ −∂cF (w)?

Not in general. There exist Lipschitz functions F such that ∂cF = B(0, 1)
everywhere.

But often in practice!

9 / 27



Stratification of “usual” (definable) functions

Key idea: “Simple” compositional structure leads to a stratified landscape

Piecewise affine functions: functions involving affine constraints and functions
(if, else,+, ·,≤,≥) decompose into affine pieces

Definable functions: functions involving elementary operations
(if, else,+, ·,×, exp, log), decompose into smooth manifolds

10 / 27



Stratification of “usual” (definable) functions

Key idea: “Simple” compositional structure leads to a stratified landscape

Piecewise affine functions: functions involving affine constraints and functions
(if, else,+, ·,≤,≥) decompose into affine pieces

Definable functions: functions involving elementary operations
(if, else,+, ·,×, exp, log), decompose into smooth manifolds

10 / 27



Usual functions are path-differentiable

Subgradient flow ≈ Gradient flows along stratification manifolds

Path differentiability (descent along curves) Valadier 1989

F (locally Lipschitz) is called path-differentiable if for all absolutely continuous curve γ, for
almost all t,

(F ◦ γ)′(t) = ⟨∂cF (γ(t)), γ̇(t)⟩
In this case F decreases along subgradient curves

Definable functions are path differentiable Bolte et al. 2007, Davis et al. 2019

11 / 27



Usual functions are path-differentiable

Subgradient flow ≈ Gradient flows along stratification manifolds

Path differentiability (descent along curves) Valadier 1989

F (locally Lipschitz) is called path-differentiable if for all absolutely continuous curve γ, for
almost all t,

(F ◦ γ)′(t) = ⟨∂cF (γ(t)), γ̇(t)⟩
In this case F decreases along subgradient curves

Definable functions are path differentiable Bolte et al. 2007, Davis et al. 2019

11 / 27



• The Clarke subgradient provides descent for path-differentiable functions.

→ Can we easily compute elements of the Clarke subgradient? In particular,
does automatic differentiation output Clarke subgradients?

• Functions implemented in practice are definable, hence they are
path-differentiable.

→ What can we say outside these functions, for instance for expectations
F (w) = Eξ∼P [f(w, ξ)]?

12 / 27



What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

relu(x) =

{
x, if x > 0

0, else.
−→

autodiff
relu′(x) =

{
1, if x > 0

0, else.

What about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule to Clarke derivatives.

if f(w) = gr ◦ gr−1 ◦ . . . ◦ g1(w)

then autodiffw f(w) ∈ ∂cgr(gr−1 ◦ . . . ◦ g1(w))T

× Jacc gr−1(gr−2 ◦ . . . ◦ g1(w))× . . .× Jaccw g1(w).

But do calculus rules apply to Clarke derivatives?

No.

• (Sum rule) ∂c(f + g) ⊊ ∂cf + ∂cg

• (Composition rule) Jacc(F ◦G) ⊊ conv Jacc F (G) Jacc G

13 / 27



What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

relu(x) =

{
x, if x > 0

0, else.
−→

autodiff
relu′(x) =

{
1, if x > 0

0, else.

What about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule to Clarke derivatives.

if f(w) = gr ◦ gr−1 ◦ . . . ◦ g1(w)

then autodiffw f(w) ∈ ∂cgr(gr−1 ◦ . . . ◦ g1(w))T

× Jacc gr−1(gr−2 ◦ . . . ◦ g1(w))× . . .× Jaccw g1(w).

But do calculus rules apply to Clarke derivatives?

No.

• (Sum rule) ∂c(f + g) ⊊ ∂cf + ∂cg

• (Composition rule) Jacc(F ◦G) ⊊ conv Jacc F (G) Jacc G

13 / 27



What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

relu(x) =

{
x, if x > 0

0, else.
−→

autodiff
relu′(x) =

{
1, if x > 0

0, else.

What about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule to Clarke derivatives.

if f(w) = gr ◦ gr−1 ◦ . . . ◦ g1(w)

then autodiffw f(w) ∈ ∂cgr(gr−1 ◦ . . . ◦ g1(w))T

× Jacc gr−1(gr−2 ◦ . . . ◦ g1(w))× . . .× Jaccw g1(w).

But do calculus rules apply to Clarke derivatives?

No.

• (Sum rule) ∂c(f + g) ⊊ ∂cf + ∂cg

• (Composition rule) Jacc(F ◦G) ⊊ conv Jacc F (G) Jacc G

13 / 27



What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

relu(x) =

{
x, if x > 0

0, else.
−→

autodiff
relu′(x) =

{
1, if x > 0

0, else.

What about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule to Clarke derivatives.

if f(w) = gr ◦ gr−1 ◦ . . . ◦ g1(w)

then autodiffw f(w) ∈ ∂cgr(gr−1 ◦ . . . ◦ g1(w))T

× Jacc gr−1(gr−2 ◦ . . . ◦ g1(w))× . . .× Jaccw g1(w).

But do calculus rules apply to Clarke derivatives?

No.

• (Sum rule) ∂c(f + g) ⊊ ∂cf + ∂cg

• (Composition rule) Jacc(F ◦G) ⊊ conv Jacc F (G) Jacc G
13 / 27



Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F = Eξ∼P [f(·, ξ)] we may
sample ∇wf(·, ξ), ξ ∼ P to have a noisy estimate of

Eξ∼P [∇wf(·, ξ)] = ∇F (Differentiation under integral)

→ Practice: f is nonsmooth, autodiffw f(w, ξ) is sampled instead of ∇wf(w, ξ).

Example 2. Implicit differentiation. H(x, y) = 0, H continuously
differentiable. How to differentiate y w.r.t. x?

∂y

∂x
= −

[
∂H

∂y

]−1
∂H

∂x
(Implicit differentiation)

→ Practice: H is optimality conditions, hence nonsmooth. ∂H is replaced by
autodiffH.

14 / 27



Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F = Eξ∼P [f(·, ξ)] we may
sample ∇wf(·, ξ), ξ ∼ P to have a noisy estimate of

Eξ∼P [∇wf(·, ξ)] = ∇F (Differentiation under integral)

→ Practice: f is nonsmooth, autodiffw f(w, ξ) is sampled instead of ∇wf(w, ξ).

Example 2. Implicit differentiation. H(x, y) = 0, H continuously
differentiable. How to differentiate y w.r.t. x?

∂y

∂x
= −

[
∂H

∂y

]−1
∂H

∂x
(Implicit differentiation)

→ Practice: H is optimality conditions, hence nonsmooth. ∂H is replaced by
autodiffH.

14 / 27



Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F = Eξ∼P [f(·, ξ)] we may
sample ∇wf(·, ξ), ξ ∼ P to have a noisy estimate of

Eξ∼P [∇wf(·, ξ)] = ∇F (Differentiation under integral)

→ Practice: f is nonsmooth, autodiffw f(w, ξ) is sampled instead of ∇wf(w, ξ).

Example 2. Implicit differentiation. H(x, y) = 0, H continuously
differentiable. How to differentiate y w.r.t. x?

∂y

∂x
= −

[
∂H

∂y

]−1
∂H

∂x
(Implicit differentiation)

→ Practice: H is optimality conditions, hence nonsmooth. ∂H is replaced by
autodiffH.

14 / 27



Nonsmooth calculus

with conservative derivatives



Conservative gradients, Bolte & Pauwels (2021)

Let F : Rn → R be locally Lipschitz, and let D : Rn ⇒ Rn be a set-valued map.
D is a conservative gradient for F if

- It generates descent trajectories

For all absolutely continuous curve
γ : [0, 1] → Rn,

d

dt
(F ◦γ)(t) = ⟨v, γ̇(t)⟩, ∀v ∈ D(γ(t)),

for almost all t ∈ [0, 1].
(extends to Jacobians)

F decreases along γ̇ ∈ −D(γ)

- Existence of the flow γ̇ ∈ −D(γ):

D is graph-closed, nonempty (convex) valued, locally bounded.

16 / 27



Conservative gradients, Bolte & Pauwels (2021)

Let F : Rn → R be locally Lipschitz, and let D : Rn ⇒ Rn be a set-valued map.
D is a conservative gradient for F if

- It generates descent trajectories

For all absolutely continuous curve
γ : [0, 1] → Rn,

d

dt
(F ◦γ)(t) = ⟨v, γ̇(t)⟩, ∀v ∈ D(γ(t)),

for almost all t ∈ [0, 1].
(extends to Jacobians)

F decreases along γ̇ ∈ −D(γ)

- Existence of the flow γ̇ ∈ −D(γ):

D is graph-closed, nonempty (convex) valued, locally bounded.

16 / 27



Conservative gradients, Bolte & Pauwels (2021)

Let F : Rn → R be locally Lipschitz, and let D : Rn ⇒ Rn be a set-valued map.
D is a conservative gradient for F if

- It generates descent trajectories

For all absolutely continuous curve
γ : [0, 1] → Rn,

d

dt
(F ◦γ)(t) = ⟨v, γ̇(t)⟩, ∀v ∈ D(γ(t)),

for almost all t ∈ [0, 1].
(extends to Jacobians)

F decreases along γ̇ ∈ −D(γ)

- Existence of the flow γ̇ ∈ −D(γ):

D is graph-closed, nonempty (convex) valued, locally bounded.

16 / 27



Conservative calculus

- Clarke subgradient of path diff. If F is path differentiable, then ∂cF is conservative.

- Sum rule Let Df , Dg be conservative gradients for f and g, Df +Dg is conservative
gradient for f + g.

- Chain rule Let Ju, Jv be conservative Jacobians for u and v. Ju(v)Jv is conservative
Jacobian for u ◦ v. → automatic differentiation outputs conservative Jacobians.

- Calculus to regularity If F has a conservative gradient, then it is path differentiable.

An extension of the conservative calculus:
Integral rule of conservative gradients

“Differentiating” under integral/expectation F = Eξ∼P [f(·, ξ)]

17 / 27



Conservative calculus

- Clarke subgradient of path diff. If F is path differentiable, then ∂cF is conservative.

- Sum rule Let Df , Dg be conservative gradients for f and g, Df +Dg is conservative
gradient for f + g.

- Chain rule Let Ju, Jv be conservative Jacobians for u and v. Ju(v)Jv is conservative
Jacobian for u ◦ v. → automatic differentiation outputs conservative Jacobians.

- Calculus to regularity If F has a conservative gradient, then it is path differentiable.

An extension of the conservative calculus:
Integral rule of conservative gradients

“Differentiating” under integral/expectation F = Eξ∼P [f(·, ξ)]

17 / 27



Integral rule: motivation in stochastic optimization

Stochastic minimization
Consider

F (w) := Eξ∼P [f(·, ξ)]

Under mild conditions, one can differentiate under E:

∇F = Eξ∼P [∇wf(·, ξ)]

First-order sampling: Sample ξ ∼ P , ∇wf(w, ξ) ≈ ∇F (w)
→ Stochastic gradient method: wk+1 = wk − αk∇wf(wk, ξk)

In practice, f(·, ξ) is nonsmooth, and

∂cF ⊊ Eξ∼P [∂
c
wf(·, ξ)]

But we have access to a conservative gradient of f(·, ξ), D(·, ξ), e.g., autodiff.

Question: What is the expectation Eξ∼P [D(·, ξ)]?

18 / 27



Integral rule: motivation in stochastic optimization

Stochastic minimization
Consider

F (w) := Eξ∼P [f(·, ξ)]

Under mild conditions, one can differentiate under E:

∇F = Eξ∼P [∇wf(·, ξ)]

First-order sampling: Sample ξ ∼ P , ∇wf(w, ξ) ≈ ∇F (w)
→ Stochastic gradient method: wk+1 = wk − αk∇wf(wk, ξk)

In practice, f(·, ξ) is nonsmooth, and

∂cF ⊊ Eξ∼P [∂
c
wf(·, ξ)]

But we have access to a conservative gradient of f(·, ξ), D(·, ξ), e.g., autodiff.

Question: What is the expectation Eξ∼P [D(·, ξ)]?

18 / 27



Integral rule of conservative gradient

Theorem (Bolte, L., Pauwels 2022)

If D(·, ξ) is conservative gradient for f(·, ξ),
then Eξ∼P [D(·, ξ)] is a conservative gradient for F .

Assumptions:
1. (Measurability assumptions) . . .
2. (Boundedness assumption) For all compact subset C ⊂ Rp, there exists an integrable function
κ : S −→ R+ such that for all

(x, s) ∈ C × S, ∥D(x, s)∥ ≤ κ(s)

where for (x, s) ∈ Rp × S, ∥D(x, s)∥ := sup
y∈D(x,s)

∥y∥.

Main outcomes:

• Justifies first-order sampling in practical implementations: e.g. autodiff or
implicit differentiation.

• F (expectation) is path-differentiable, under simple assumptions.

19 / 27



Integral rule of conservative gradient

Theorem (Bolte, L., Pauwels 2022)

If D(·, ξ) is conservative gradient for f(·, ξ),
then Eξ∼P [D(·, ξ)] is a conservative gradient for F .

Assumptions:
1. (Measurability assumptions) . . .
2. (Boundedness assumption) For all compact subset C ⊂ Rp, there exists an integrable function
κ : S −→ R+ such that for all

(x, s) ∈ C × S, ∥D(x, s)∥ ≤ κ(s)

where for (x, s) ∈ Rp × S, ∥D(x, s)∥ := sup
y∈D(x,s)

∥y∥.

Main outcomes:

• Justifies first-order sampling in practical implementations: e.g. autodiff or
implicit differentiation.

• F (expectation) is path-differentiable, under simple assumptions.

19 / 27



Many other applications of conservative calculus! Differentiating max functions,
ODE solutions, algorithmic recursions, function approximations

• Pauwels, Conservative Parametric Optimality and the Ridge Method for Tame Min-Max
Problems (2023)

• Marx-Pauwels, Path differentiability of ODE flows (2022)

• Bolte-Pauwels-Vaiter, Automatic differentiation of nonsmooth iterative algorithms (2022)

• Iutzeler-Pauwels-Vaiter, Derivatives of SGD (2024)

• Schechtman, The gradient’s limit of a definable family of functions is a conservative
set-valued field (2024)

20 / 27



Nonsmooth implicit differentiation formula.

Bolte, L., Pauwels, Silveti-Falls (2021)

Setting: y ∈ argminθ g(x, θ) written as H(x, y) = 0
How to differentiate y with respect to x?
Applications: Bi-level opt., optimization layers, hyperparameter selection . . .

nonsmooth, path differentiable:

smooth:

is a conservative Jacobian

21 / 27



Analysis of the stochastic subgradient method

“as implemented practice”



Nonsmooth stochastic gradient method

We consider the problem

Minimize
w∈Rp

F (w) := Eξ∼P [f(w, ξ)],

We study a nonsmooth stochastic gradient method

wk+1 ∈ wk − αkD(wk, ξk). (1)

For ξ ∈ Rm, D(·, ξ) is a conservative gradient for f(·, ξ) → encompasses practical
calculus: autodiff, implicit differentiation ...

Integral rule: (1) writes

wk+1 ∈ wk − αk(DF (wk) + ϵk),

where DF = Eξ∼P [D(·, ξ)] is conservative gradient for F , ϵk has zero conditional
mean w.r.t. wk.

23 / 27



Nonsmooth stochastic gradient method

We consider the problem

Minimize
w∈Rp

F (w) := Eξ∼P [f(w, ξ)],

We study a nonsmooth stochastic gradient method

wk+1 ∈ wk − αkD(wk, ξk). (1)

For ξ ∈ Rm, D(·, ξ) is a conservative gradient for f(·, ξ) → encompasses practical
calculus: autodiff, implicit differentiation ...

Integral rule: (1) writes

wk+1 ∈ wk − αk(DF (wk) + ϵk),

where DF = Eξ∼P [D(·, ξ)] is conservative gradient for F , ϵk has zero conditional
mean w.r.t. wk.

23 / 27



The ODE approach

Key idea: Studying algorithms as ODE discretizations.

wk+1 − wk

αk
= −DF (wk) + ϵk ⇝ γ̇ ∈ −DF (γ) (2)

Interpolated process w:

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

w : R+ → Rp is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim
t→∞

inf
γ solution

sup
s∈[0,T ]

∥w(t+ s)− γ(s)∥ = 0.

24 / 27



The ODE approach

Key idea: Studying algorithms as ODE discretizations.

wk+1 − wk

αk
= −DF (wk) + ϵk ⇝ γ̇ ∈ −DF (γ) (2)

Interpolated process w:

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

w : R+ → Rp is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim
t→∞

inf
γ solution

sup
s∈[0,T ]

∥w(t+ s)− γ(s)∥ = 0.

24 / 27



The ODE approach

Key idea: Studying algorithms as ODE discretizations.

wk+1 − wk

αk
= −DF (wk) + ϵk ⇝ γ̇ ∈ −DF (γ) (2)

Interpolated process w:

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

w : R+ → Rp is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim
t→∞

inf
γ solution

sup
s∈[0,T ]

∥w(t+ s)− γ(s)∥ = 0.

24 / 27



Convergence results

F decreases along γ̇ ∈ −DF (γ) (conservative gradient)
+ w is APT

= Asymptotic descent

Convergence results

• Essential accumulation points w∗ satisfy 0 ∈ DF (w
∗).

• Under definable assumptions on P , {F (w) : 0 ∈ DF (w)} has empty interior:
F (wk) converges and all accumulation points satisfy 0 ∈ DF (w

∗).

Essential accumulation point w∗ is such that for all open U ∋ w∗,

lim sup
k→∞

∑k
i=0 αi1wi∈U∑k

i=0 αi

> 0 a.s.

Proportion of time spent around w∗

Assumptions
• (wk)k∈N bounded a.s.

• αk > 0,
∑
αk = ∞,

∑
α2
k <∞

• ∥D(w, s)∥ ≤ κ(s)ψ(w), κ square integrable, ψ locally bounded.

25 / 27



Convergence results

F decreases along γ̇ ∈ −DF (γ) (conservative gradient)
+ w is APT

= Asymptotic descent

Convergence results

• Essential accumulation points w∗ satisfy 0 ∈ DF (w
∗).

• Under definable assumptions on P , {F (w) : 0 ∈ DF (w)} has empty interior:
F (wk) converges and all accumulation points satisfy 0 ∈ DF (w

∗).

Essential accumulation point w∗ is such that for all open U ∋ w∗,

lim sup
k→∞

∑k
i=0 αi1wi∈U∑k

i=0 αi

> 0 a.s.

Proportion of time spent around w∗

Assumptions
• (wk)k∈N bounded a.s.

• αk > 0,
∑
αk = ∞,

∑
α2
k <∞

• ∥D(w, s)∥ ≤ κ(s)ψ(w), κ square integrable, ψ locally bounded.

25 / 27



Convergence results

F decreases along γ̇ ∈ −DF (γ) (conservative gradient)
+ w is APT

= Asymptotic descent

Convergence results

• Essential accumulation points w∗ satisfy 0 ∈ DF (w
∗).

• Under definable assumptions on P , {F (w) : 0 ∈ DF (w)} has empty interior:
F (wk) converges and all accumulation points satisfy 0 ∈ DF (w

∗).

Essential accumulation point w∗ is such that for all open U ∋ w∗,

lim sup
k→∞

∑k
i=0 αi1wi∈U∑k

i=0 αi

> 0 a.s.

Proportion of time spent around w∗

Assumptions
• (wk)k∈N bounded a.s.

• αk > 0,
∑
αk = ∞,

∑
α2
k <∞

• ∥D(w, s)∥ ≤ κ(s)ψ(w), κ square integrable, ψ locally bounded.
25 / 27



Conclusion and perspectives

- Conservative derivatives provide a justification to many implementations of
“gradient” method

• nonsmooth automatic differentiation,

• Differentiation under integral → nonsmooth stochastic algorithms

• Implicit differentiation → can be applied to bi-level programming,
optimization layers, implicit layers

• many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves → ODE approach → convergence results.

Importance of “rigidity” (definability):

• Chain rule of simple (definable) functions

• Definable P → stronger convergence

• Avoidance of artefacts, beyond the general criticality notion 0 ∈ DF :

“For most initialization w0 and stepsizes, accumulation points satisfy
0 ∈ ∂cF (w∗).”

26 / 27



Conclusion and perspectives

- Conservative derivatives provide a justification to many implementations of
“gradient” method

• nonsmooth automatic differentiation,

• Differentiation under integral → nonsmooth stochastic algorithms

• Implicit differentiation → can be applied to bi-level programming,
optimization layers, implicit layers

• many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves → ODE approach → convergence results.

Importance of “rigidity” (definability):

• Chain rule of simple (definable) functions

• Definable P → stronger convergence

• Avoidance of artefacts, beyond the general criticality notion 0 ∈ DF :

“For most initialization w0 and stepsizes, accumulation points satisfy
0 ∈ ∂cF (w∗).”

26 / 27



Conclusion and perspectives

- Conservative derivatives provide a justification to many implementations of
“gradient” method

• nonsmooth automatic differentiation,

• Differentiation under integral → nonsmooth stochastic algorithms

• Implicit differentiation → can be applied to bi-level programming,
optimization layers, implicit layers

• many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves → ODE approach → convergence results.

Importance of “rigidity” (definability):

• Chain rule of simple (definable) functions

• Definable P → stronger convergence

• Avoidance of artefacts, beyond the general criticality notion 0 ∈ DF :

“For most initialization w0 and stepsizes, accumulation points satisfy
0 ∈ ∂cF (w∗).”

26 / 27



A good property may persists “outside” a class of nice objects:
“Eξ∼P [D(·, ξ)] is a conservative gradient”

ODEMeasures
Risks

simple, rigidpotentially pathological

How far can the analysis benefit from this?
• Convergence theory: constant (large?) steps, complexity...

• Algorithmic extensions: constraints, biased oracle; beyond vanishing stepsizes: adaptive
algorithms; non i.i.d. samples, ...

Can we design algorithms based on this nice geometry?
When nonsmoothness is “useful” (robustness, bi-level opt...).

Thank you!!!

27 / 27



A good property may persists “outside” a class of nice objects:
“Eξ∼P [D(·, ξ)] is a conservative gradient”

ODEMeasures
Risks

simple, rigidpotentially pathological

How far can the analysis benefit from this?
• Convergence theory: constant (large?) steps, complexity...

• Algorithmic extensions: constraints, biased oracle; beyond vanishing stepsizes: adaptive
algorithms; non i.i.d. samples, ...

Can we design algorithms based on this nice geometry?
When nonsmoothness is “useful” (robustness, bi-level opt...).

Thank you!!!

27 / 27



A good property may persists “outside” a class of nice objects:
“Eξ∼P [D(·, ξ)] is a conservative gradient”

ODEMeasures
Risks

simple, rigidpotentially pathological

How far can the analysis benefit from this?
• Convergence theory: constant (large?) steps, complexity...

• Algorithmic extensions: constraints, biased oracle; beyond vanishing stepsizes: adaptive
algorithms; non i.i.d. samples, ...

Can we design algorithms based on this nice geometry?
When nonsmoothness is “useful” (robustness, bi-level opt...).

Thank you!!!

27 / 27


