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Abstract

Motivated by the widespread use of approximate derivatives in machine learning
and optimization, we study inexact subgradient methods with non-vanishing additive
errors and step sizes. In the nonconvex semialgebraic setting, under boundedness as-
sumptions, we prove that the method provides points that eventually fluctuate close
to the critical set at a distance proportional to ϵρ where ϵ is the error in subgradient
evaluation and ρ relates to the geometry of the problem. In the convex setting, we
provide complexity results for the averaged values. We also obtain byproducts of in-
dependent interest, such as descent-like lemmas for nonsmooth nonconvex problems
and some results on the limit of affine interpolants of differential inclusions.

1 Introduction

Let f : Rp → R be locally Lipschitz and consider the unconstrained global minimization
problem

min
x∈Rp

f(x).

An important tool for addressing such problems in modern high-dimensional nonsmooth
settings, are subgradient algorithms, see e.g.[55, 56, 24, 49]. We focus here on the inexact
or biased subgradient method, see [56]:

xk+1 ∈ xk − αk

[
∂cf(xk) + B̄(0, ϵ)

]
, x0 ∈ Rn ,

where for all k ∈ N, αk > 0 is a sequence of positive step sizes, ϵ > 0 is an error or a bias
level and ∂c denotes the Clarke subdifferential [20].
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Let us first provide some motivations and some insights into this type of method, com-
menting in particular on two of its most distinctive features: inexact oracle evaluation
and nonsmoothness.

The sources of error in the subgradient evaluation are very diverse. They may be generated
by numerical errors or approximation techniques for derivatives: for instance the use of
complex oracles for derivatives [34, 44, 13, 19], or the use of low precision computations,
as the default 32 bits precision for training neural networks or more advanced techniques
[25]. In recent decades, due to the increasing size of problems in both dimension and
structural complexity—such as large sums, composite structures, intrinsic complexity
of layers, differentiable programming, and federated learning—there has been a rapid
development of what we could call “sketchy calculations”. In our case, the concept of a
sketch calculus is employed to achieve cost-effective evaluation of subgradients, with the
goal of saving memory, reducing computational overhead, and managing heterogeneous
information. One can, for instance, think of subgradients sketched through mini-batching
[39], sparsification [61], using sophisticated compression techniques [45] or incremental
techniques [56, 46]. Federated and distributed learning, see e.g. [45], also provides many
cases where subgradients estimates are inexact. The vast area of stochastic optimization
provides many examples where one needs to deal with noisy measurement of sub-gradients,
due to random subsampling of mini-batches, or Monte Carlo approximation errors; see
[29, 47, 57, 32, 33, 38]. However, in this paper, we do not address stochastic approximation
as it deserves a separate study.

Nonsmooth (and inexact) subgradient methods have deep roots in optimization with the
many works of Shor [55], Ermoliev [29], Norkin [50], Nemirovskii [48] and also the pio-
neering work of Solodov-Zaidev [56]. Nonsmoothness is indeed prevalent for both convex
and nonconvex problems. In the convex world, robustness questions naturally provide
nonsmooth max problems [8], regularization techniques resort to nonsmooth regularizers
[1, 59, 22, 7], while bundle methods rely on complex polyhedral oracles, see e.g. [44]. Mod-
ern machine learning provides a wealth of applications involving nonsmoothness. While
this aspect has always been witnessed in deep learning through standard building blocks
such as ReLU activations and MaxPooling, it appears in more recent contexts: for in-
stance, sorting procedures may be used to promote sparsity [30], while optimization layers
[3] may be used to refine learning abilities.

An original aspect of our work related to nonsmoothness is to deal with nonvanishing
stepsizes. This makes the study considerably more difficult as steps are not used to
mitigate the oscillation effects inherent to nonsmoothness and errors. One of our interests
in this aspect is to be able to deal with the widespread use of schedulers in deep learning
that do not systematically provide steps tending toward zero [51, 42, 21].

Let us now outline the main contributions of this article, highlighting the most original
ones:

— The regularity assumptions on the cost f are weak and easily verifiable. Our results
indeed apply to all local Lipchitz semialgebraic functions (or definable in an o-
minimal structure), covering therefore a vast area of applications,
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— We deal with constant step sizes and the endogenous bias they produce. As a
byproduct, Lemma 13 provides a general result of independent interest for the ODE
method, characterizing the limit points of small constant steps recursions.

— We show that all the terms of the sequence eventually fluctuate around the critical
sets.

— We provide a bound for the fluctuation zone in O(ϵρ), where ρ is related to the local
geometry of the problem.

— In the convex case we do not make use of compactness or strong error bounds as-
sumptions, we merely assume the function to be convex semialgebraic and coercive.

Our work is inscribed in a long series of reflections on nonsmooth and inexact (sub)gradient
methods, for which we give a brief non-comprehensive overview.

The inexact subgradient algorithm with Clarke regular losses was studied in the pioneering
[56]. There are many results for the convex case since the first studies within the Russian-
Soviet school, they generally use demanding error bounds or compactness of the domain,
see e.g. [46, 36], contrary to ours which resort uniquely on semialgebraicity and coercivity.
Our convergence analysis is based on the comparison of sequences and trajectories of
continuous time dynamical systems. It has become classical since the seminal work of [41,
10]. The ODE method for nonsmooth optimization with zero mean noise was considered in
the pioneering [24], from which we borrow several ideas. Yet, we deal with non vanishing
errors, and we go beyond vanishing steps. Previous studies on constant step sizes also
use the ODE method [9, 31, 53, 11, 12], but our main theorems provide stronger results
for an ubiquitous class of functions (semialgebraic, and even definable functions). In the
nonconvex setting, the study of stochastic gradient algorithm with bias is not new [58, 27,
52, 49], but the results are either for smooth functions or based on strong assumptions,
as sharpness or metric regularity. Let us mention [27] which contains results that are
qualitatively similar to ours but for continuously differentiable functions. See [26] for a
recent survey of this literature.

2 Preliminaries and statement of the main results

2.1 Notations.

For f : Rp → R locally Lipschitz, we denote its Clarke subdifferential by ∂cf , and, for
ϵ > 0, we define

critϵ f = {x : dist(0, ∂cf(x)) ≤ ϵ} ,
vcritϵ f = f(critϵ f), (1)

the ϵ-critical set, which is closed and the set of ϵ-critical values. When l /∈ vcritϵ f , it is
called an ϵ-regular value. We also denote by crit f the critical set and vcrit f the set of
critical values. The set of minimizers is argmin f .
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For notational convenience, we write the algorithm as

xk+1 = xk − αkvϵ(xk), (2)

where vϵ : Rp → R represent the biased oracle, i.e. satisfies dist(vϵ(x), ∂
cf(x)) ≤ ϵ for all

x ∈ Rp.

Throughout the next sections, we use the shorthand [a ≤ g ≤ b], for real numbers a, b
and function g : Rp → R, to denote {x ∈ Rp : a ≤ g(x) ≤ b}. We also use the same
notations for = and <, >. We denote the Euclidean norm by ∥ · ∥. For A ⊂ Rp, we let
∥A∥ = supa∈A ∥a∥. For a subset, A ⊂ Rp, A is its closure, and Ac its complement. For
ϵ > 0, B̄(0, ϵ) is the closed ball of center 0 and radius ϵ. We denote the distance of a
point x to a compact set A ⊂ Rp by dist(x,A) := infz∈A ∥x− z∥. Given a set-valued map
Z : Rp ⇒ Rq, we denote the graph of Z by

graph[Z] := {(x, y) ∈ Rp × Rq : y ∈ Z(x)} .

2.2 Main results

The nonconvex setting We will work under the following assumption.

Assumption 1. The function f : Rp → R is L-Lipschitz, lower-bounded, semialgebraic
with critϵ f bounded for some ϵ > 0.

As stated in Lemma 7, Assumption 1 ensures that f is also coercive. Our first main result
relates to vanishing step sizes.

Theorem 1 (Convergence for biased subgradient method with vanishing step size). Under
Assumption 1, there is ϵ̄ > 0, C > 0 ρ > 0 such that for any ϵ < ϵ̄, x0 ∈ Rp, there is
ᾱ > 0, such that for any (xk)k∈N given by (2) with 0 < αk ≤ ᾱ for all k ∈ N, αk → 0 and∑∞

k=0 αk = ∞, we have

lim
k→∞

dist(f(xk), vcritϵ f) = 0,

lim sup
k→∞

dist(xk, crit f) ≤ Cϵρ.

Our second main result relates to small constant step sizes.

Theorem 2 (Convergence for biased subgradient method with constant step size). Under
Assumption 1, there is ϵ̄ > 0, C > 0 ρ > 0 such that for any ϵ < ϵ̄, x0 ∈ Rp, and (xk(α))k∈N
given by (2) with αk = α > 0 for all k ∈ N, we have

lim
α→0+

lim sup
k→∞

dist(f(xk(α)), vcritϵ f) = 0,

lim sup
α→0+

lim sup
k→∞

dist(xk(α), crit f) ≤ Cϵρ.
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The convex setting We complete these two results with an explicit estimate for the
convex case. Our result is in the line of usual results, see, e.g., [46, 36], but does not use
any compactness or strong error bounds.

For a coercive, convex, semialgebraic function f : Rp → R, there exists c > 0 and a ∈ (0, 1],
such that

c

2
((f(x)−min f)a + (f(x)−min f)) ≥ dist(x, argmin f) ∀x ∈ Rp. (3)

Theorem 3 (Biased subgradient complexity: convex case). Let f : Rp → R be L-Lipschitz,
semialgebraic, convex and coercive. Then with a ∈ (0, 1] and c > 0, as in (3), for any
sequence generated by (2), we have

(2− a− ϵc)

∑k
i=0 αi(f(xi)− f ∗)∑k

i=0 αi

≤ (1− a)(ϵc)
1

1−a +
∥x0 − x∗∥2 + (L+ ϵ)2

∑k
i=0 α

2
i∑k

i=0 αi

.

We understand for a = 1, the value (1− a)(ϵc)
1

1−a as 0 if ϵc < 1 and undefined or infinite
otherwise.

This allows to get convergence rates in value with various choices of step size. For example,
if ϵc < 1, choosing αi =

1√
k+1

for i = 0, . . . , k, leads to

min
i=1,...,k

f(xk)− f ∗ ≤ (1− a)(ϵc)
1

1−a

2− a− ϵc
+

∥x0 − x∗∥2 + (L+ ϵ)2

(2− a− ϵc)
√
k + 1

.

Note that the bound is vacuous if for example a = 1 and ϵ ≥ 1/c and provides effective
guarantees only for small values of ϵ. This is somewhat unavoidable: if f is the absolute
value and ϵ > 1, one completely looses control of the resulting biased subgradient sequence.
This is the so called “low error” setting.

2.3 Reading keys and natural extensions

For the two first theorems, we examine the continuous-time limit of the recursion (2),
which leads to a differential inclusion given in (4). A special Lyapunov mechanism is
introduced in Section 3: Along the flow, the objective decreases only in certain regions
of the space and may increase in other regions. This mechanism is used to describe the
asymptotics of the system and provides explicit estimates in the Lipschitz coercive setting,
under a Kurdyka-Lojasiewicz assumption for f and a metric regularity assumption for ∂cf .
This leads to an explicit estimate of the distance to crit f for any positively invariant set
A such that f(A) ⊂ vcritϵ f . The proof of Theorem 1 and Theorem 2 then consists of
justifying the fact that relevant asymptotic sets fulfill this invariance property, which is
done in Section 4. The main device is to use the small step limiting relation between
the recursion (2) and its continuous-time counterpart for which the analysis was made in
Section 3.

Theorem 3 is obtained by using standard Lyapunov functions in convex optimization and
by applying an error bound condition that is automatically satisfied in the semialgebraic
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case. These arguments are given in Section 5 and are completely independent of the
arguments for Theorem 1 and Theorem 2, which make up the main technical part of this
work.

These results could be readily extended in various ways.

— It can be seen directly that the same results apply beyond semialgebraicity to
any polynomially bounded o-minimal structure, the prototypical example being the
structure of globally subanalytic sets, see [60] for an overview.

— It is also directly possible to obtain qualitatively similar results, without the conver-
gence rate estimates, in any o-minimal structure, replacing the exponent estimates
by definable functions [60].

— While we consider the Clarke subdifferential, the main device used in the proof
is the chain rule along Lipschitz curves, which is satisfied for the broader class
of conservative gradient fields [17]. Examples are automatic differentiation oracles
and generalized derivatives as in [28]. It is known that conservative gradients may
induce spurious stationary points. The result in [16, Theorem 4.12] ensures that up
to removing a zero measure meagre set of possible initialization x0 ∈ Rp and a finite
set of step sizes α ∈ R, one does actually manipulate the subdifferential oracle.

— We only consider the deterministic setting, it is possible to extend these results to the
stochastic approximation setting, by adding zero mean stochastic perturbation terms
which satisfy summability hypotheses for vanishing step sizes [10] or by resorting
to the study of convergence of stationary measures in the constant step size setting
[53].

3 The continuous-time system and auxiliary results

Let f : Rp → R be locally Lipschitz. Consider for ϵ > 0, the differential inclusion

ẋ(t) ∈ −∂cf(x(t)) + B̄(0, ϵ), (4)

for almost every t ∈ [0,+∞), where the solution is to be found among locally Lipschitz
curves. Existence of solutions on maximal intervals follows from classical results, see [6, 4].
In particular, if f is Lipschitz, we may consider solutions defined on R+. Equivalently, x
is solution to (4) if for almost every t, dist(ẋ(t),−∂cf(x(t))) ≤ ϵ.

3.1 Asymptotics of the biased dynamics

Following Valadier and [17], a locally Lipschitz function f is called path-differentiable if
for any Lipschitz curve γ : R → Rp, we have for almost every t ∈ R,

d

dt
(f ◦ γ)(t) = ⟨v, γ̇(t)⟩ , ∀v ∈ ∂cf(γ(t)).

Semialgebraic functions are path-differentiable [24, 17]. Under path-differentiability, we
obtain the following results.
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Lemma 4 (Descent properties). Let f be locally Lipschitz and path-differentiable. Let
ϵ > 0 and x : R+ → Rp be a solution to the differential inclusion (4) assumed to be
defined on R+ (see remark below). Then,

1. (Weak Lyapunov) There is a measurable selection vx of ∂cf(x(·)) such that,

f(x(t2))− f(x(t1)) ≤ −
∫ t2

t1

∥vx(t)∥(∥vx(t)∥ − ϵ)dt. ∀0 ≤ t1 ≤ t2.

In particular, if f(x(0)) ̸∈ vcritϵ f , there is t > 0 such that f(x(s)) < f(x(0)) for
all 0 ≤ s ≤ t.

2. (Decrease) Let l ̸∈ cl vcritϵ f be such that f(x(0)) ≤ l then for all t > 0, f(x(t)) < l.

3. (Asymptotics) Either ∥x(t)∥ → +∞ as t → +∞, or we have both

lim inf
t→∞

dist(0, ∂cf(x(t))) ≤ ϵ

lim
t→∞

dist(f(x(t)), vcritϵ f) = 0.

4. (Quantitative estimates) For any 0 ≤ a < b and δ > ϵ, set T = b−a
δ(δ−ϵ)

and assume
that f(x([0, T ])) ⊂ [a, b], then there is t ∈ [0, T ] such that dist(0, ∂cf(x(t))) ≤ δ.

5. (ϵ-stationarity) For any a ∈ R and T > 0, if f(x([0, T ])) = a then x([0, T ]) ⊂ critϵ f .

Remark 1. Actually Lemma 4 points 1, 2, 4, 5 hold on the interval of definition of the
solution which does not need to be R+. In our proofs, we will apply Lemma 4 to solutions
defined on an interval [0, T ] ⊂ R+.

Proof :

1. Consider a measurable selection vx such that for almost every t ≥ 0,

vx(t) ∈ argmin v∈∂cf(x(t))∥ẋ(t) + v∥.

Such a selection exists, see e.g. [2, 18.13]. Since ẋ(t) ∈ −∂cf(x(t)) + B̄(0, ϵ), then
∥ẋ(t) + vx(t)∥ ≤ ϵ for almost every t ≥ 0. Then, by path-differentiability of f , we have
for almost every t ≥ 0,

d

dt
(f ◦ x)(t) = ⟨vx(t), ẋ(t)⟩

= ⟨vx(t),−vx(t) + vx(t) + ẋ(t)⟩
= −∥vx(t)∥2 + ⟨vx(t), vx(t) + ẋ(t)⟩
≤ −∥vx(t)∥(∥vx(t)∥ − ∥ẋ(t) + vx(t)∥)
≤ −∥vx(t)∥(∥vx(t)∥ − ϵ). (5)
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Integrating from t1 to t2 gives the desired inequality. If f(x(0)) ̸∈ vcritϵ f , then x(0) ̸∈
critϵ f since critϵ f is closed, there is a compact set U with x(0) ∈ int U such that
U ∩ critϵ f = ∅ and f is Lipschitz on U . We may therefore choose t > 0 small enough
such that x(s) ∈ U for all s ∈ [0, t] and the result follows.

2. We distinguish two cases.

Case 1. Assume that f(x(0)) /∈ cl vcritϵ f . Let us show that f(x(t)) < f(x(0)) for all
t > 0.

Since (cl vcritϵ f)
c is open and f is locally Lipschitz, there exists t∗ > 0 small enough

such that f(x(s)) /∈ cl vcritϵ f for all s ∈ [0, t∗]. In this case, 1 gives us f(x(s)) ≤
f(x(0))−

∫ t∗

0
∥vx(s)∥(∥vx(s)∥ − ϵ∥) < f(x(0)) for all s ∈ (0, t∗].

Now we show that for all t ≥ t∗, f(x(t)) ≤ f(x(t∗)). Assume toward a contradiction
that there exists t ≥ t∗ such that f(x(t∗)) < f(x(t)). Since f(x(t∗)) /∈ cl vcritϵ f , we may
chose t so that [f(x(t∗)), f(x(t))] ⊂ (cl vcritϵ f)

c by openness of the latter. Now, consider
t− = max{s : s ∈ [t∗, t], f(x(s)) ≤ f(x(t∗))}, and t+ = min{s : s ∈ [t−, t], f(x(s)) ≥
f(x(t))}. By continuity of f ◦x, t− and t+ are well defined with t+ ≥ t−, and they satisfy
for all s ∈ [t−, t+], f(x(s)) ∈ [f(x(t−)), f(x(t+))] ⊂ (cl vcritϵ f)

c ⊂ (vcritϵ f)
c, as well as

f(x(t−)) = f(x(t∗)) and f(x(t+)) = f(x(t)). In particular, f(x(t+)) > f(x(t−)) hence
t+ > t−. Let vx be given by 1. Then we have

f(x(t+))− f(x(t−)) ≤ −
∫ t+

t−
∥vx(s)∥(∥vx(s)∥ − ϵ)ds < 0,

where the last inequality comes from t+ > t− and ∥vx(s)∥ > ϵ for almost every s ∈ [t−, t+]
since f(x(s)) /∈ vcritϵ f . This yields a contradiction. We have shown that for all t ≥ t∗,
f(x(t)) ≤ f(x(t∗)).

Finally, for t ∈ (0, t∗], f(x(t)) < f(x(0)), and for t > t∗, f(x(t)) ≤ f(x(t∗)) < f(x(0))
hence the desired result under the assumption that f(x(0)) ̸∈ cl vcritϵ f .

Case 2. Now, assume that f(x(0)) ∈ cl vcritϵ f and f(x0) ≤ l for l ̸∈ cl vcritϵ f . In this
case we actually have f(x(0)) < l. Since (cl vcritϵ f)

c is open, there is l′ ̸∈ cl vcritϵ f such
that f(x(0)) < l′ < l. Then by continuity of f ◦ x, either f(x(t)) < l for all t or there
exists t > 0 such that f(x(t)) = l′ and t can be chosen to be minimal since [f ◦ x = l′] is
closed and lower bounded. We have f(x(s)) ≤ l′ for all s ≤ t, and by 2.1, we have for all
s ≥ t, f(x(s)) ≤ l′. Since l′ < l, we have the desired result.

4. We now prove the fourth item, which does not depend on item 3 but is used to prove
item 3. We have a < b. Assume toward a contradiction that dist(0, ∂cf(x(t))) > δ for
all t ∈ [0, T ]. Since s → dist(0, ∂cf(x(s))) is lower semi-continuous, there exists δ′ > δ
such that dist(0, ∂cf(x(t))) ≥ δ′ for all t ∈ [0, T ]. In this case, 1 gives us f(x(T )) ≤
f(x(0))− Tδ′(δ′ − ϵ), hence

f(x(T )) ≤ b− (b− a)
δ′(δ′ − ϵ)

δ(δ − ϵ)
< b− (b− a) = a

This is a contradiction as we assumed that f(x(T )) ≥ a.

3. Assume that ∥x(t)∥ does not go to +∞, this means that the trajectory has accumulation
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points. So f(x(t)) also has finite accumulation values and in particular f(x(t)) does not
diverge to −∞ or +∞.

— Using 1, we have that lim inft→∞ dist(0, ∂cf(x(t))) > ϵ implies that f(x(t)) → −∞ as
t → ∞ and we obtain the first limit.

— Denote by I all the accumulation points of f(x(t)) as t → ∞. I is a nonempty interval
by continuity of f ◦ x and by the fact that f ◦ x does not go to +∞ or to −∞. We
distinguish two cases.

First if I has empty interior, then I = {l} and f(x(t)) → l for some l ∈ R. Since the
trajectory x has accumulation points, we may find a diverging sequence (tk)k∈N in R+

such that x(tk) → x̄ ∈ Rp as k → ∞, and we have f(x̄) = l. By 4.2, for any δ > ϵ,
set a = l − δ(δ − ϵ), b = l + δ(δ − ϵ) we have f(x(tk + R+)) ∈ [a, b] for k sufficiently
large and therefore, there exists sk ∈ [tk, tk + 2] such that dist(0, ∂cf(x(sk))) ≤ δ. This
can be repeated for smaller δ and we may find a sequence, (sk)k∈N, such that for each
k, sk ∈ [ti, ti + 2] for some i ∈ N and dist(0, ∂cf(x(sk)) → ϵ. The restricted trajectory
{x([ti, ti +2])}i∈N remains in a bounded set, so up to a subsequence, we may assume that
x(sk) converges to a point x̃ ∈ critϵ f with f(x̃) = l. This shows that l ∈ vcritϵ f .

Secondly, let us assume that I has nonempty interior. Assume toward a contradiction
that there exists l ∈ int I∩(cl vcritϵ f)c. In this case, there is u > 0 such that [l−u, l+u] ⊂
int I ∩ (cl vcritϵ f)

c and t such that f(x(t)) ∈ [l − u, l]. By 2, we have f(x(s)) < l for all
s > t, but this is contradictory with the fact that l + u ∈ int I, because this implies that
t 7→ f(x(t)) has accumulation values strictly greater than l+u. So I is an interval such that
∅ ≠ intI ⊂ cl vcritϵ f hence I ⊂ cl vcritϵ f . This means that supv∈I dist(v, vcritϵ f) = 0,
which is the desired result.

5. If T > 0 and f ◦ x is constant on [0, T ], by 1, we necessarily have dist(0, ∂cf(x(t))) ≤ ϵ
for almost every t ∈ (0, T ), and x([0, T ]) ∈ critϵ f because critϵ f is closed and x is
continuous.

□

3.2 Estimates under the nonsmooth KL inequality and a metric
subregularity condition

We will obtain more precise estimates under the following assumption.

Assumption 2. f is L-Lipschitz, path-differentiable, the set vcrit f is non-empty finite,
and there exists ϵ̄ ∈ (0, 1) such that for any 0 ≤ ϵ ≤ ϵ̄, vcritϵ f is a finite union of segments.

Furthermore, there exists c > 0 and θ ∈ [0, 1), and β > 0 such that for all x ∈ f−1(vcritϵ̄ f)

dist(f(x), vcrit f)θ ≤ c dist(0, ∂cf(x)) (KL)
dist(x, crit f) ≤ c dist(0, ∂cf(x))β. (MR)

Property (KL) is some form of the nonsmooth Kurdyka-Lojasiewicz inequality [15], while
(MR) is a form of metric sub-regularity of the subdifferential around the critical set, see
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[40, Proposition 3.1] for a general result, but also [35, 5, 54, 43] for concrete applications
in optimization.

In our context, Assumption 2 is essential to control trajectories of (4). Some previous
works on biased algorithms relied as well on similar conditions. For instance, KL inequality
for real analytic functions was used in [27] and metric regularity (β = 1) appears in [49].
Assumption 2 is actually satisfied for all semialgebraic functions:

Lemma 5 (Semialgebraicity implies regularity). If Assumption 1 is satisfied, then As-
sumption 2 is also satisfied for some ϵ̄ > 0.

Proof : According to Sard’s theorem for semialgebraic functions [15], vcrit f is finite.
Assumption 1 ensures that there exists ϵ̄ such that critϵ f is compact for every 0 ≤ ϵ ≤ ϵ̄.
For 0 ≤ ϵ ≤ ϵ̄ the sets vcritϵ f ⊂ R are then compact and semialgebraic, i.e. they consist
of a finite number of segments. Furthermore, by Lemma 7 (see next subsection), f is
coercive so f−1(vcritϵ̄ f) is compact. (KL) follows from Kurdyka-Lojasiewicz inequality
for nonsmooth semialgebraic functions [14] and compactness. As for (MR), this is Hölder
metric subregularity as given in [40, Proposition 3.1] on the compact set f−1(vcritϵ̄ f).

□

We will therefore prove Theorem 1 and Theorem 2 under Assumption 2.

Remark 2 (Beyond semialgebraicity ). Semialgebraicity in Assumption 1 can be replaced
by global subanalyticity and all results would hold true in the exact same form. This
allows to include the logarithm and exponential function restricted to compact segments
for example. More generally, our results hold provided that f is definable in a polynomially
bounded o-minimal structure [23], for which semialgebraic sets and globally subanalytic
sets are the main examples. Our results could also be extended if in Assumption 1
we assume that f is definable in an o-minimal structure (not necessarily polynomially
bounded) instead of being semialgebraic. Under this assumption, we would obtain the
same results in Theorem 1 and Theorem 2, but the power like estimates would be replaced
by abstract non negative increasing definable functions continuous at 0 with value 0.

The next lemma generalizes the following fact, “for a locally Lipschitz continuous semi-
algebraic f and a subgradient curve x (ẋ(t) ∈ −∂cf(x(t)) for all t ∈ R+), the inclusion
f(x(R+)) ⊂ vcrit f , implies 0 ∈ ∂cf(x(t)) for all t ≥ 0”. Indeed, vcrit f is made of a finite
number of singletons, and if there is t > 0 such that dist(0, ∂cf(x(t))) > 0, this would
hold locally and result in a strict decrease by path-differentiability. We would thus have a
time t′ > 0 such that f(x(t′)) ̸∈ vcrit f . This fact, corresponding to the case when ϵ = 0,
can be extended to a general ϵ > 0.

Lemma 6 (Approximate stationarity of near-critical curves). Under Assumption 2, set
ρ := min

{
(1−θ)β
θ(1+β)

, β
}
. There exists C > 0, such that for any ϵ ∈ [0, ϵ̄] and any solution

curve x : R+ → Rp such that f(x(R+)) ⊂ vcritϵ f , we have for all t ≥ 0,

dist(x(t), crit f) ≤ Cϵρ. (6)

10



Proof : Fix an arbitrary ϵ ≤ ϵ̄, and x : R+ → Rp an arbitrary solution. Since f(x(R+)) is
connected, f(x(R+)) is contained in a single connected component of vcritϵ f of the form
[a, b] ⊂ R.

For all z ∈ critϵ f , dist(0, ∂cf(z)) ≤ ϵ implies dist(f(z), vcrit f) ≤ (cϵ)
1
θ using (KL). Let

N ∈ N such that v0 ≤ v1 ≤ · · · ≤ vN+1 are the ordered critical values in [a, b] to which
we added v0 = a and vN+1 = b. This defines N + 1 segments which cover [a, b], one
of them has length at least b−a

N+1
. Consequently, there is an open segment (u, v) such

that v − u = b−a
N+1

which does not contain any critical value. Therefore, we may choose
z ∈ critϵ f such that f(z) = (u+ v)/2 and we have

dist(f(z), vcrit f) ≥ v − u

2
=

b− a

2(N + 1)
. (7)

Combining (7) with (KL), we obtain

b− a ≤ 2(N + 1)(cϵ)
1
θ := K1ϵ

1
θ . (8)

We fix an arbitrary α > 0 and t ≥ 0. By Lemma 4-.4 and (8), there is t′ ≥ t, such that

dist(0, ∂cf(x(t′))) ≤ ϵ+ ϵα (9)

t′ − t ≤ b− a

(ϵ+ ϵα)ϵα
≤ K1ϵ

1
θ

(ϵ+ ϵα)ϵα
≤ K1ϵ

1
θ

ϵ1+α
. (10)

It follows using the inclusion (4), the fact that f is L-Lipschitz so that its subgradient is
bounded by L, and (10) that

∥x(t′)− x(t)∥ ≤
∫ t′

t

∥ẋ(s)∥ds ≤ (t′ − t)(L+ ϵ) ≤ (L+ ϵ)
K1ϵ

1
θ

ϵ1+α
(11)

Finally, using the estimates (11), (9) and (MR),

dist(x(t), crit f) ≤ ∥x(t)− x(t′)∥+ dist(x(t′), crit f)

≤ (L+ ϵ)K1ϵ
1
θ
−1−α + c(ϵ+ ϵα)β. (12)

Since t ≥ 0 was arbitrary, the estimate (12) holds for all t ≥ 0. Furthermore since α > 0
was arbitrary, we may choose α freely. We distinguish two cases.

• If θ > 1
2+β

, then we choose α = 1−θ
θ(1+β)

< 1, and the exponent in (12) is of the form

Cϵ
(1−θ)β
θ(1+β) .

• If θ ≤ 1
2+β

then we may choose α = 1
θ
− β − 1 ≥ 1, and the exponent in (12) is of

the form Cϵβ.

□
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Remark 3 (On the initialization). It may be puzzling not to see a condition on the
initialization in Lemma 6. This is actually hidden in the condition f(x(R+)) ⊂ vcritϵ f
which enforces x to start close enough to crit f so that f(x(t)) cannot leave vcritϵ f near
t = 0.

Lemma 6 has the following direct consequence.

Corollary 1 (Invariant sets and biased dynamics). Under Assumption 2, let ϵ ≤ ϵ̄,
S ⊂ Rp be a positively invariant set, that is for any z ∈ S, there is x : R+ → Rp, solution
to (4) such that x(R+) ⊂ S and x(0) = z. If f(S) ⊂ vcritϵ f , then for any z ∈ S,
dist(z, crit f) ≤ Cϵρ, where C, ρ are given by Lemma 6.

For the continuous time dynamics in (4), it is known that the set of accumulation points
of a bounded solution trajectory form invariant set (see for example [10, Theorem 3.6,
Lemma 3.5]). We obtain the following.

Corollary 2 (Asymptotics of biased dynamics). Under Assumption 2, let ϵ ≤ ϵ̄, and
x : R+ → R be a bounded solution to the differential inclusion (4). For any z ∈ Rp,
accumulation point of the trajectory, we have dist(z, crit f) ≤ Cϵρ, where C, ρ are given
by Lemma 6.

3.3 Coercivity and boundedness of ϵ critical points

Due to the importance of boundedness of curves in our results, we need to make a brief
detour through coercivity properties and their link with the boundedness of critϵ f . Let
us recall first:

Theorem 1 (Ekeland’s variational principle). Let X be a complete metric space with
distance d. Let f : X 7→ R∪{+∞} be lower semi-continuous, bounded below and finite at
least at one point. Fix ϵ > 0 and x0 ∈ X such that f(x0) ≤ ϵ + infx f(x). Then for any
λ > 0, there is y0 ∈ X such that

f(y0) ≤ f(x0) d(x0, y0) ≤ λ f(x) +
ϵ

λ
d(x, y0) > f(y0), ∀x ̸= y0.

The conclusion tells us that y0 is a strict global minimizer of g : x → f(x) +
ϵ

λ
d(x, y0).

In our framework, Rp is endowed with the Euclidean distance and f is locally Lipschitz,
so using the sum rule with the Clarke subdifferential yields the following fact:

0 ∈ ∂cg(y0) ⊂ ∂cf(y0) + B̄
(
0,

ϵ

λ

)
(13)

This has the following consequences:

Lemma 7 (Boundedness of the ϵ-critical set implies coercivity). Assume that f : Rp → R
is locally Lipschitz, then for any x ∈ Rp, a ∈ (0, 1), there is y ∈ Rp such that

∥y∥ ≥ ∥x∥ − ∥x∥a, dist(0, ∂cf(y))∥x∥a ≤ f(x)− inf f.

In particular, if f is lower bounded and critϵ̄ f is bounded for some ϵ̄ > 0, then f is
coercive.

12



Proof : Fix x ∈ Rp, if f(x) = inf f there is nothing to prove. Choose ϵ = f(x) −
inf f (assumed finite, otherwise there is nothing to prove) and λ = ∥x∥a. By Ekeland’s
variational principle in Theorem 1 there is y ∈ Rp such that

∥x− y∥ ≤ ∥x∥a,

hence ∥y∥ ≥ ∥x∥ − ∥x∥a. Moreover using (13), i.e., 0 ∈ ∂cf(y) + B̄
(
0, ϵ

∥x∥a

)
, we get

dist(0, ∂cf(y)) ≤ ϵ
∥x∥a .

If critϵ̄ f is bounded for some ϵ̄ > 0, and f was not coercive, we could choose a sequence
∥xk∥ = k + 1 so that f(xk) − inf f is bounded by some M , and obtain an unbounded
sequence yk in critϵ̄ f for k large enough. □

Remark 4 (Coercivity and critical points). (a) Of course crit f bounded and nonempty
does not imply coercivity, e.g., take s → (1 + s2)−1.
(b) The fact that “critϵ f bounded (for some ϵ > 0) implies f coercive” is a generalization
of the classical result in convex analysis “argmin f bounded implies f coercive when f is
convex”.

4 Main consequences for the biased subgradient method

4.1 Link between discrete and continuous-time

In this section, we repeatedly use the connection between the discrete and continuous-time
systems in the limit of small step sizes. This is a classical approach which we state for
a general set-valued map, see [18, Lemma 21]. We use the following assumptions which
guarantee the existence of solutions to the differential inclusion [6, Chapter 2, Section 1,
Theorem 3].

Assumption 3. Z is a set-valued map defined from Rp into the subsets of Rp; it is
assumed to be nonempty convex valued and locally bounded with closed graph.

Lemma 8 (Approximate solutions to differential inclusions). Let Z be as in Assumption 3.
For each i ∈ N, let Ti > 0 and assume that Ti → T as i → ∞ for some T > 0.
For each i ∈ N, let γi : [0, Ti] → Rp be a Lipschitz curve. Assume that the sequence
(γi)i∈N converges to some bounded and Lipschitz curve γ : [0, T ] → R, in the sense that
supt∈[0,min(Ti,T )] ∥γ(t)− γi(t)∥ → 0, and

lim
i→∞

∫ Ti

0

dist((γi(t), γ̇i(t)), graph[Z]) dt = 0. (14)

Then γ̇(t) ∈ Z(γ(t)) for almost every t ∈ [0, T ].

The following is classical and can be found for example in [18]. We will use it extensively
to obtain discrete descent lemmas in the coming section.
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Lemma 9 (Affine interpolants of discrete dynamics and their limit curves). Consider
T > 0 and sequences satisfying

xk+1 − xk ∈ αkZ(xk), k = 0, 1, . . . , K,

where K is such that
∑K−1

k=0 αk ≥ T and 0 < αk ≤ α, k = 0, . . . , K−1. Let γα : [0, T ] → Rp

be the interpolation of (xk)k=0,...,K defined as follows: for all k = 0, 1, . . . , K, γα
(∑k−1

i=0 αk

)
=

xk, and γα is affine between these points. The curve γα satisfies∫ T

0

dist((γα(t), γ̇α(t)), graph[Z]) dt ≤ αT sup
0≤k≤K−1

∥Z(xk)∥.

In particular, if Z is bounded and we have a uniformly bounded family of such curves
γα, up to a subsequence, as α → 0, the curves converge uniformly to a solution of the
underlying differential inclusion.

Proof : For all α > 0, the curve γα satisfies for any t ∈ [0, T ],

dist((γα(t), γ̇α(t)), graph[Z]) ≤ α sup
0≤k≤K−1

∥Z(xk)∥,

as γ̇α(t) = Z(xk) where k is the closest point xk on the curve corresponding to time
smaller than t.

When Z is bounded by a constant L, one has a uniform bound since max0,≤k≤K ∥Z(xk)∥ ≤
L. In that case, the curves γα are L-Lipschitz continuous and thus equicontinuous.
Whence, by letting α → 0, if the curves are bounded, Arzelà-Ascoli theorem applies and
provides a subsequence of γα that uniformly converges to solutions of the continuous-time
differential inclusion, thanks to Lemma 8. □

4.2 Descent lemmas

We now state some consequences of Lemma 8 which apply to our setting, see also [37] for
similar arguments in the unbiased setting.

Lemma 10 (Quasi-descent Lemma). Let f be locally Lipschitz and path-differentiable,
ϵ > 0 and l ̸∈ vcritϵ f . Then for any η > 0 and M > 0, there is ᾱ > 0 such that for any
z ∈ Rp satisfying f(z) ≤ l, ∥z∥ ≤ M , and for any sequence generated by (2), with x0 = z
and αk ≤ ᾱ, we have f(xk) ≤ l + η for all k < inf{i ∈ N : ∥xi∥ > M}.
In particular, under Assumption 1, there is M > 0, such that for α small enough, all
sequences generated by (2) initialized with f(x0) ≤ l are bounded by M .

Proof : Toward a contradiction, we assume that there is M > 0 such that for any α > 0,
there exists z = x0 such that f(z) ≤ l and a sequence (αk)k∈N smaller than α such that
there exists K > 0 satisfying f(xK) > l + η and ∥xk∥ ≤ M for all k = 0, . . . , K. Observe
that (αk)k∈N depends on α, and denote by L a Lipschitz constant of f on the ball of radius
M .
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We fix a time horizon T < η/(L2 + Lϵ) and we may assume that α < T . We may then
also find k ∈ N such that f(xk) ≤ l and f(xi) > l for all i = k + 1, . . . , K. We have

l + η < f(xK) ≤ f(xk) + L

K−1∑
j=k

∥xj+1 − xj∥ ≤ l + L
K−1∑
j=k

αj(L+ ϵ) = l + (L2 + Lϵ)
K−1∑
j=k

αj.

We deduce that
∑K−1

j=k αj > T . Let K ′ ≥ k be the smallest value such that
∑K′

j=k αj ≥ T ,
since α < T and by the argument above, we have k < K ′ ≤ K−1. We may then consider
the truncated sequence (xi)i=k,...,K′+1, which is nonempty whenever α < T . Consider the
affine interpolation of this truncated sequence from i = k to i = K ′+1 ≤ K and restricted
to [0, T ] (which is possible because

∑K′

i=k αk ≥ T ) as in Lemma 9, call it xα, it is Lipschitz
and satisfies:

• ∥xα(t)∥ ≤ M for all t ∈ [0, T ].

• xα(0) = xk, f(xα(0)) ≤ l and f(xα(t)) > l for some t ∈ [0, α].

• l ≤ f(xα(t)) ≤ l + η + αL(L+ ϵ) for all t ∈ [α, T ].

• dist((xα(t), ẋα(t)), graph
[
−∂cf + B̄(0, ϵ)

]
) ≤ α(L + ϵ) and ∥ẋα(t)∥ ≤ L + ϵ for

almost every t.

Thus, these trajectories are uniformly bounded and equicontinuous. Applying Arzelà-
Ascoli theorem allows to obtain a converging subsequence as α → 0. Lemma 8 ensures
that the limit x : [0, T ] → Rp is a solution to (4) such that f(x(0)) = l and f(x([0, T ])) ≥ l
which contradicts Lemma 4.1 (see Remark 1 for its validity for x defined on [0, T ]).

The last remark follows because under Assumption 1, f is coercive (Lemma 7). Then
it is Lipschitz on the (compact) sublevel set l + η, say with constant L. For a step size
threshold α0, choose M0 = max{∥x∥+α0(L+ϵ), f(x) ≤ L+η} and denote by L̃ a Lipschitz
constant of f on the ball or radius M0 centered at zero. By coercivity, we may choose
M > 0 large enough such that inf∥x∥≥M f(x) > l + η + α0L̃(L + ϵ). Applying the lemma
for this choice of M , reducing the resulting ᾱ if it is bigger than α0, for any admissible
sequence, we have for all k such that f(xk) ≤ l+ η, it holds that ∥xk+1 − xk∥ ≤ α0(L+ ϵ)
and ∥xk∥ + α0(L + ϵ) ≤ M0 so that both xk and xk+1 are contained in the ball of radius
M0. We deduce that f(xk+1) ≤ l + η + α0L̃(L + ϵ) so ∥xk+1∥ ≤ M . We deduce that
k + 1 < inf{i ∈ N : ∥xi∥ > M} and the main statement of the lemma ensures that,
f(xk+1) ≤ l + η. By induction this holds true for all k ∈ N. □

Lemma 11 (ϵ-regular values are repulsive). Let f : Rp → R be locally Lipschitz and path
differentiable, ϵ > 0, l ̸∈ vcritϵ f , and η := dist(l, vcritϵ f)/16 > 0. For any M > 0, there
is ᾱ > 0 such that for any sequence generated by (2), with αk ≤ ᾱ for all k ∈ N, and∑

k∈N αk = +∞, either {i ∈ N, ∥xi∥ > M} is nonempty or lim infk→∞ f(xk) > l + 2η or
lim supk→∞ f(xk) < l − 2η.

In particular under Assumption 1, there is ᾱ > 0 such that regardless of the initial condi-
tion for any sequence generated by (2), with αk ≤ ᾱ, and

∑
k∈N αk = +∞ for all k ∈ N,

lim infk→∞ f(xk) > l + 2η or lim supk→∞ f(xk) < l − 2η.
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Proof : Fix M > 0 and denote by L a Lipschitz constant of f on the ball of radius
M . By definition of η, we have that [l − 8η, l + 8η] ⊂ (vcritϵ f)

c. Set δ := min{∥v∥ :
v ∈ ∂cf(x), x ∈ Rp, ∥x∥ ≤ M, |f(x) − l| ≤ 8η} > ϵ and T ≥ 12 η

δ(δ−ϵ)
. Any solution

x : [0, T ] → Rp to (4) bounded by M such that f(x(0)) ≤ l+4η satisfies f(x(T )) ≤ l−8η
by Lemma 4.1.

1. Therefore there is ᾱ > 0, such that any sequence generated by (2), bounded by M ,
with f(x0) ≤ l+4η satisfies f(xk) ≤ l−4η for some k ∈ N and therefore has accumulation
values below l − 4η. Indeed, if this was not the case, using Lemma 8 and the fact that∑

k∈N αk = +∞, we could construct a solution to the differential inclusion satisfying
f(x(0)) ≤ l + 4η satisfying f(x(T )) ≥ l − 4η, which contradicts the previous statement.

2. Let us first observe that for all k, if ∥xk∥ ≤ M and ∥xk+1∥ ≤ M , then

|f(xk+1)− f(xk)| ≤ L∥xk+1 − xk∥ ≤ ᾱL(L+ ϵ),

so that we can assume, shrinking ᾱ if necessary that this gap is less than η. Hence we
may assume that for any sequence bounded by M such that lim supk→∞ f(xk) ≥ l − 2η
and lim infk→∞ f(xk) ≤ l + 2η, (f(xk))k∈N takes infinitely many value in [l − 4η, l + 4η].

3. We may reduce ᾱ as given by Lemma 10 so that any sequence initialized with f(x0) ≤
l − 4η and bounded by M satisfies f(xk) ≤ l − 3η for all k ∈ N. The chosen ᾱ satisfies
the required properties.

Let us first summarize the properties of ᾱ. Note that the properties claimed above can
be shifted by initializing a sequence at an arbitrary K ∈ N and by considering k ≥ K.
Below, (xk)k∈N is any sequence generated by (2) with αk ≤ ᾱ for all k ∈ N, bounded by
M , and K ∈ N is arbitrary.

1. If f(xK) ≤ l + 4η , there is k ≥ K such that f(xk) ≤ l − 4η.

2. If lim supk→∞ f(xk) ≥ l − 2η and lim infk→∞ f(xk) ≤ l + 2η, then there is k ∈ N
such that f(xk) ∈ [l − 4η, l + 4η].

3. If f(xK) ≤ l − 4η then f(xk) ≤ l − 3η for all k ≥ K.

For the choice of ᾱ as above, assume toward a contradiction that there exists a sequence
generated by (2), bounded by M , with αk ≤ ᾱ for all k ∈ N, satisfying lim supk→∞ f(xk) ≥
l − 2η and lim infk→∞ f(xk) ≤ l + 2η. There would be K ∈ N such that f(xK) ∈
[l − 4η, l + 4η] by 2 and we deduce by 1 that there is k ≥ K such that f(xk) ≤ l − 4η.
This implies by 3 that lim supk→∞ f(xk) ≤ l − 3η which is contradictory.

The last comment follows because by Lemma 10 reducing ᾱ if necessary, there is M > 0
such that all sequences generated by (2) with f(x0) ≤ l+3η and αk ≤ ᾱ for all k ∈ N are
bounded by M . If lim infk→∞ f(xk) ≤ l+2η, then there is K > 0 such that f(xK) ≤ l+3η
and by considering x̃k = xk+K , bounded by M , the result follows. □

Under Assumption 1, f is coercive and vcritϵ f is closed. Combining the two previous
lemma we obtain

Corollary 3 (Large-horizon descent Lemma). Under Assumption 1, fix x0 such that
f(x0) ̸∈ vcritϵ f and η > 0. There is ᾱ > 0 such that any sequence generated by (2) with
αk ≤ ᾱ and

∑
k∈N αk = +∞ we have
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(i) f(xk) ≤ f(x0) + η for all k ∈ N,

(ii) there is κ such that
f(xk) ≤ c+ η, ∀k ≥ κ

where c is the first ϵ-critical value below f(x0).

Note that if (1 + ρ)η < f(x0)− c for some ρ > 0, the above implies

f(xk) ≤ f(x0)− ρη for k ≥ κ,

where κ is unknown.

4.3 Vanishing step sizes

For vanishing step sizes, the work of Benaim-Hofbauer-Sorin [10] ensures that the set of
accumulation points is invariant. We additionally show that it has accumulation values
in vcritϵ f . The main result stated in Theorem 1 is a consequence of the following result
and Lemma 5.

Theorem 12 (Convergence for biased subgradient with vanishing step). Under Assump-
tion 2, let C, ρ be given by Lemma 6 and ϵ < ϵ̄. Assume that (xk)k∈N, is given by (2) with
αk → 0 and

∑∞
k=0 αk = ∞. If supk∈N ∥xk∥ < ∞ (which always holds if f is coercive for

small enough step sizes),

lim
k→∞

dist(f(xk), vcritϵ f) = 0,

lim sup
k→∞

dist(xk, crit f) ≤ Cϵρ.

The boundedness condition always holds for small enough step sizes if f is coercive.

Proof : By assumption, there is M > 0 such that for all k ∈ N, ∥xk∥ ≤ M . Denote
by Lf the set of limit points of f(xk), it is an interval since αk → 0. We first prove
the first statement which is equivalent to the fact that Lf does not contain any value
l ̸∈ vcritϵ f . Suppose toward a contradiction that this is the case, then there exists a value
l ∈ (vcritϵ f)

c∩Lf . For such a value l, let η > 0 be given by Lemma 11 (vcritϵ f is closed by
Assumption 2). Recall that (αk)k∈N is vanishing so that either lim infk→∞ f(xk) > l + 2η
or lim supk→∞ f(xk) < l − 2η, which is in contradiction with l ∈ Lf .

Denote by L the set of accumulation points of the sequence (xk)k∈N. By the previous
statement we have f(L) ⊂ vcritϵ f . By [10, Theorem 4.2 and 4.3], L is an internally chain
transitive set. In particular, L is invariant for the inclusion (4) by [10, Lemma 3.5]. This
means that for any x̄ ∈ L, there is a solution x to (4), such that x(0) = x̄ and x(R) ∈ L.
The second statement follows by Corollary 1. □
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4.4 Constant step sizes

We start this section with a general result on constant step size discretization which is of
independent interest.

Lemma 13 (Limits of accumulation points are invariant). Let M > 0 be a bound and x0 ∈
Rp be fixed. Under Assumption 3, for any s > 0, denote by L(s) the set of accumulation
points of sequences satisfying xk+1(s) = xk(s) + sh(xk(s)) for each k ∈ N, where h is a
selection in Z. Assume that L(s) is nonempty and bounded by M for all s small enough.
Set

L =
⋂
α>0

cl

{ ⋃
0<s≤α

L(s)

}
.

Then the set L is nonempty and invariant with respect to the flow induced by Z in the
sense that for any x̄ ∈ L there exists a solution to the differential inclusion ẋ(t) ∈ Z(x(t))
for almost every t ∈ R such that x(R) ⊂ L and x(0) = x̄.

Proof : The assumption that L(s) is bounded by a fixed M for small enough s ensures
that all considered sequences are bounded and we may restrict all the asymptotics to
happen in a fixed bounded set (for example of size 2M), in particular, Z will be bounded
by ζ on this set. This ensures that L is nonempty and this that all considered objects
remain in a bounded set.

Let x̄ ∈ L. For a fixed α > 0, x̄ ∈ cl ∪s≤α L(s) means that for any e > 0, there is s ≤ α
such that dist(x̄, L(s)) ≤ e. Therefore if x̄ ∈ L, we deduce that there exists a sequence
(sj)j∈N which tends to 0 and a sequence x̄j ∈ L(sj) which tends to x̄ as j → ∞.

Fix an arbitrary T > 0 and j ∈ N. We set Kj = ⌈T/sj⌉ and consider for k ≥ Kj,
Xj,k = (xi(sj))

i=k+Kj

i=k−Kj
. Up to a subsequence, as k → ∞, Xj,k converges to X̄j which

contains 2Kj+1 accumulation points in L(sj), the central one chosen to be x̄j. The affine
interpolation of the (ordered) collection of points in X̄j is denoted γ̄j : [−T, T ] → Rp with
γ̄j(0) = x̄j.

This construction can be repeated for all j ∈ N and using Arzelà-Ascoli, there is a subse-
quence of (γ̄j)j∈N which converges uniformly to γ̄ : [−T, T ] → Rp. We have γ̄([−T, T ]) ⊂ L.
Indeed let t ∈ [−T, T ]. For any e > 0, we have ∥γ̄j(t)− γ̄(t)∥ ≤ e for j high enough. By
construction, γ̄j(sj⌈t/sj⌉) ∈ L(sj). Since sj⌈t/sj⌉ converges to t and γ̄j is Lipschitz with
same constant for all j, then ∥γ̄(t)− γ̄j(sj⌈t/sj⌉)∥ ≤ 2e for all j high enough. Since e was
arbitrary, this means γ̄(t) ∈ L.

We claim that γ̄ is a solution to (4).

Indeed, for any j ∈ N, there is kj ∈ N such that ∥Xj,kj −X̄j∥ ≤ 1/j. Let γj : [−T, T ] → Rp

be the affine interpolation of Xj,kj . Up to the Arzelà-Ascoli subsequence, γj → γ̄ uniformly
on [−T, T ]. Furthermore, for each j∫ T

−T

dist((γj(t), γ̇j(t)), graph[Z]) dt ≤ 2Tsjζ
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By Lemma 8, this shows that γ̄ is a solution to (4).

The function γ̄ may be extended to [−2T, 2T ], [−3T, 3T ], . . . by taking further subse-
quences for each j and further Arzelà-Ascoli subsequences. The resulting function is
defined on R and has to be a solution to (4). This concludes the proof. □

The main result stated in Theorem 2 is a consequence of the following result and Lemma 5.

Theorem 14 (Convergence for biased subgradient with constant steps). Under Assump-
tions 2, let C, ρ be given by Lemma 6 and ϵ < ϵ̄. Set for all α > 0, (xk(α))k∈N, as given by
(2) with αk = α, for all k ∈ N. Then if lim supα→0 supk→∞ ∥xk(α)∥ < ∞ (which always
holds if f is coercive),

lim
α→0

lim sup
k→∞

dist(f(xk(α)), vcritϵ f) = 0,

lim sup
α→0

lim sup
k→∞

dist(xk(α), crit f) ≤ Cϵρ.

Proof : By assumption, there is M > 0 such that for small enough α, ∥xk(α)∥ ≤ M for
all k ∈ N large enough.

For each s denote by L(s) the set of limit points of xk(s), which is closed. We set
L = ∩α>0cl ∪s≤α L(s) which is closed as an intersection of closed set, and bounded by
M . Intuitively L is the set of accumulation points of accumulation points of (xk(α))k∈N
as α → 0. By Lemma 13, L is invariant. We will show that f(L) ⊂ vcritϵ f from which
the first statement follows. The second is then a consequence of Corollary 1.

For any l /∈ vcritϵ f , since vcritϵ f is closed by Assumption 2, Lemma 11 ensures that
there is ᾱ and η, such that for any s ≤ ᾱ, [l − 2η, l + 2η] ∩ f(L(s)) = ∅. We deduce that

[l − 2η, l + 2η] ∩ f (∪s≤ᾱL(s)) = ∅
[l − η, l + η] ∩ f (cl ∪s≤ᾱ L(s)) = ∅ (use continuity).

Whence we see that for any l ̸∈ vcritϵ f , l ̸∈ f (∩α>0cl ∪s≤α L(s)), and therefore f(L) ⊂
vcritϵ f through complementation. This proves the first claim. □

5 The convex case

Proof of Theorem 3: Consider a sequence of step sizes (αk)k∈N and a iterates (xk)k∈N
such that for all k ∈ N,

xk+1 = xk − αk(vk + bk),
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for some vk ∈ ∂cf(xk) and ∥bk∥ ≤ ϵ. We have for any k ∈ N and any x∗ ∈ X∗,

1

2
∥xk+1 − x∗∥22 =

1

2
∥xk − αk(vk + bk)− x∗∥22

=
1

2
∥xk − x∗∥22 + αk(vk + bk)

T (x∗ − xk) +
α2
k

2
∥vk + bk∥22

≤ 1

2
∥xk − x∗∥22 − αk(f(xk)− f ∗) + αkϵ∥xk − x∗∥+ α2

k

2
(L+ ϵ)2.

We deduce, using the error bound (3), that

1

2
dist(xk+1, X

∗)2 (15)

≤ 1

2
dist(xk, X

∗)2 − αk(f(xk)− f ∗) + αkϵdist(xk, X
∗) +

α2
k

2
(L+ ϵ)2

≤ 1

2
dist(xk, X

∗)2 + αk

(
ϵ
c

2
((f(xk)− f ∗)a + (f(xk)− f ∗))− (f(xk)− f ∗)

)
+

α2
k

2
(L+ ϵ)2.

If a = 1: This means that we have a sharp function, then, as long as ϵc < 1, we obtain
the same global rate as the classical subgradient algorithm, modulo a constant (1 − ϵc),
and all accumulation points in the argmin. Indeed, summing the previous inequality from
i = 0 to k leads to

(1− ϵc)

∑k
i=0 αi(f(xi)− f ∗)∑k

i=0 αi

≤ ∥x0 − x∗∥22 + (L+ ϵ)2
∑k

i=0 α
2
i∑k

i=0 αi

.

We remark that this is exactly the claimed formula for a = 1.

If a < 1: Then we can use the following lemma

Lemma 15. Set g(δ) = sδt − δ for some t ∈ (0, 1) and s > 0, then for all δ ∈ R+

g(δ) ≤ −(1− t)(δ − s
1

1−t ).

Proof : The function g is concave on R+, set δ0 = s
1

1−t , we have g(δ0) = 0 and g′(δ0) =
t− 1 < 0 and the result follows by concavity. □

We obtain setting δ = f(xk)− f ∗ applying Lemma 15 to (15)

1

2
dist(xk+1, X

∗)2 − 1

2
dist(xk, X

∗)2

≤ αk

2

(
−(1− a)

(
(f(xk)− f ∗)− (ϵc)

1
1−a

)
+ (ϵc− 1)(f(xk)− f ∗)

)
+

α2
k

2
(L+ ϵ)2

=
αk

2

(
(ϵc+ a− 2)(f(xk)− f ∗) + (1− a)(ϵc)

1
1−a

)
+

α2
k

2
(L+ ϵ)2
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We deduce by summation

(2− a− ϵc)

∑k
i=0 αi(f(xi)− f ∗)∑k

i=0 αi

≤ (1− a)(ϵc)
1

1−a +
∥x0 − x∗∥2 + (L+ ϵ)2

∑k
i=0 α

2
i∑k

i=0 αi

.

□
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