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Abstract

Distributionally robust optimization has emerged as an attractive way to train robust
machine learning models, capturing data uncertainty and distribution shifts. Recent
statistical analyses have proved that robust models built from Wasserstein ambiguity
sets have nice generalization guarantees, breaking the curse of dimensionality. However,
these results are obtained in specific cases, at the cost of approximations, or under
assumptions difficult to verify in practice. In contrast, we establish, in this article, exact
generalization guarantees that cover all practical cases, including any transport cost
function and any loss function, potentially non-convex and nonsmooth. For instance,
our result applies to deep learning, without requiring restrictive assumptions. We
achieve this result through a novel proof technique that combines nonsmooth analysis
rationale with classical concentration results. Our approach is general enough to extend
to the recent versions of Wasserstein/Sinkhorn distributionally robust problems that
involve (double) regularizations.

1 Introduction

1.1 Wasserstein robustness: models and generalization

Machine learning models are challenged in practice by many obstacles, such as biases in
data, adversarial attacks, or data shifts between training and deployment. Towards more
resilient and reliable models, distributionally robust optimization has emerged as an attractive
paradigm, where training no longer relies on minimizing the empirical risk, but rather on an
optimization problem that takes into account potential perturbations in the data distribution;
see e.g., the review articles [23, 9].

More specifically, the approach consists in minimizing the worst-risk among all distributions
in a neighborhood of the empirical data distribution. A natural way [27] to define such a
neighborhood is to use the optimal transport distance, called the Wasserstein distance [28].
Between two distributions Q and Q′ on a sample space Ξ, the Wasserstein distance is defined
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as the minimal expected cost among all coupling probability π on Ξ× Ξ having Q and Q′ as
marginals:

Wc(Q,Q
′) := inf

π∈P(Ξ×Ξ)
[π]1=Q,[π]2=Q′

E(ξ,ζ)∼π[c(ξ, ζ)], (1)

where c : Ξ × Ξ → R is a transport cost over the sample space Ξ. For a class of loss
functions F , the Wasserstein distributionally robust counterpart of the standard empirical
risk minimization then writes

min
f∈F

max
Q∈P(Ξ),Wc(P̂n,Q)≤ρ

Eξ∼Q[f(ξ)], (2)

for a chosen radius ρ of the Wasserstein ball centered at the empirical data distribution,
denoted P̂n. In the degenerate case ρ = 0, we have Q = P̂n and (2) boils down to empirical
risk minimization. If ρ > 0, the training captures data uncertainty and provides more resilient
learning models; see the discussions and illustrations [33, 35, 39, 24, 26, 36, 20, 4, 7].

To support theoretically the modeling versatility and the practical success of these robust
models, some statistical guarantees have been proposed in the literature. For a population
distribution P , i.i.d. samples ξ1, . . . , ξn drawn from P , and the associated empirical distribution
P̂n := 1

n

∑n
i=1 δξi , the best concentration results for the Wasserstein distance [18] gives that if

the radius ρ is large enough, then the Wasserstein ball around P̂n contains the true distribution
P with high probability, which in turn gives directly [27] a generalization bound of the form
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Figure 1: Probability of the generalization
bound (3) to hold, estimated from 500 logistic
regression instances and their ℓ1-robust coun-
terparts (see at the end of Section 3). For large
ρ, the bound always holds, whereas it does not
for small ρ. Our aim is to quantify this phe-
nomenon, which is not explained by existing
results.

max
Q∈P(Ξ),Wc(P̂n,Q)≤ρ

Eξ∼Q[f(ξ)] ≥ Eξ∼P [f(ξ)]. (3)

This exact bound is particularly attractive: the
quantity that we compute from data and optimize
by training provides a control on the idealistic
population risk. However, the direct application of
[18] requires a number of training samples growing
exponentially in the dimension.

Recent works have improved this direct ap-
proach by establishing, in various situations, gener-
alization bounds that do not suffer from the curse of
dimensionality, and rather feature radius ρ scaling
as O(1/

√
n) [35, 10, 3, 19, 5, 11]. Yet no exist-

ing result is general enough to cover all situations
encountered in machine learning and to explain
nice generalization properties usually observed in
practice (as illustrated in Figure 1).

1.2 Contributions and outline

In this paper, we provide exact generalization guarantees of the form (3), that are universal, in
the sense that they apply to all machine learning situations, without restrictive assumptions.
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Indeed, our results apply to any kind of data lying in a metric space (e.g. classification and
regression tasks with mixed features), as well as general classes of continuous loss functions
(e.g. from standard regression tasks to deep learning models).

We prove these universal results by dealing directly with the nonsmoothness of the robust
objective function (2) that we tackle with tools from variational analysis [14, 31, 1]. As a
nice outcome of this approach, our results are able to cover deep learning models involving
nonsmooth elementary blocks, such as the popular ReLU activation function, the max-pooling
operator, or optimization layers [2]. Moreover, our approach is systematic enough to extend
to the recent versions of Wasserstein distributionally robust problems that involve (double)
regularizations [6, 38].

The paper is structured as follows. First, Section 2 introduces and illustrates the setting
of this work. Then Section 3 presents and discusses the main results (Theorems 3.1 and 3.2).
Section 4 highlights our proof techniques, combining classical concentration lemma and
advanced nonsmooth analysis aspects. Finally, Section 5 sheds some light on generalization
constants and other quantities of interest appearing in the results and the proof. We differ, to
the supplementary, the proofs of the succession of lemmas, as well as complementary results
discussing technical assumptions of existing works.

1.3 Related work

Our work stands out from a recent line of research establishing generalization guarantees for
Wasserstein distributionally robust models, breaking the curse of dimensionality. Notably,
important results on the topic include [10, 11] about asymptotical results for smooth losses,
and [13, 34] about non-asymptotically results for linear models and for smooth loss functions.
For nonsmooth losses, the only work we are aware of is [3] which derives results on piece-wise
smooth losses (at the cost of abstract approximating constants). We underline that none of
existing results covers deep learning models involving nonsmooth elementary blocks.

The closest work to our paper is [5] which establishes generalization results similar to
ours, namely: exact bounds (3) in a regime where ρ > O(1/

√
n). In sharp contrast with

our work though, these results rely on a restrictive context and some needless assumptions
(the squared norm for c, a Gaussian reference distribution, additional growth conditions, and
abstract compactness conditions1). Throughout our developments, we will point out further
technical differences with this work.

1.4 Notations

On probability spaces. Given a measurable space Ξ, we denote the space of probability
measures on Ξ by P(Ξ). For all π ∈ P(Ξ× Ξ), i ∈ {1, 2}, we denote the ith marginal of π by
[π]i. We denote the Dirac mass at ξ ∈ Ξ by δξ. Given a measurable function g : Ξ→ R, we
denote the expectation of g with respect to Q ∈ P(Ξ) by Eξ∼Q[g(ξ)] and we may also use the
shorthand EQ[f ].

1We show in Proposition F.3 in the supplementary that the compactness assumptions hide strong conditions
on the maximizers.
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On function spaces. In (X , dist) a metric space, the uniform norm of a function f is
∥f∥∞ = supx∈X |f(x)|. If F is a family of functions, we denote ∥F∥∞ = supf∈F ∥f∥∞. We
say f is Lipschitz with constant L if for all x, y ∈ X , |f(x) − f(y)| ≤ L dist(x, y). For
ϕ : R×X → R, we denote ∂+λ ϕ the right-sided derivative with respect to λ ∈ R, and ∂λϕ its
derivative, whenever well-defined.

2 Assumption and examples

In this section, we present the general framework illustrated by standard examples. Through-
out the paper, we will make the following assumptions on the sample space Ξ, the transport
cost of the Wasserstein distance, and the space F of loss functions from Ξ to R.

Assumption 2.1.

• (Ξ, d) is a compact metric space.

• c : Ξ× Ξ→ R is jointly continuous with respect to d, non-negative and c(ξ, ζ) = 0 if
and only if ξ = ζ.

• (F , ∥ · ∥∞) is compact and every f ∈ F is continuous.

This setting encompasses a wide range of machine learning scenarios, as illustrated below.

Sample space and transport costs. The choice of the transport cost c depends on
the nature of the data and of the potential data uncertainty. For instance, if the variables
are continuous with Ξ ⊂ Rm, we consider the distance d = ∥ · − · ∥p induced by ℓp-norm
(p ∈ [1,∞]) and the cost as a power (q ∈ [1,∞)) of the distance

c(ξ, ξ′) = ∥ξ − ξ′∥qp.

If the variables are discrete with Ξ ⊂ {1, . . . , J}m, we consider the distance

d(ξ, ξ′) =
m∑
i=1

1{ξi ̸=ξ′i}

and the cost as a power of this distance. Finally, If we deal with mixed data, i.e. they
contain both continuous and discrete variables, a sum of the previous costs can be considered.
In classification, for instance, with the samples composed of features x ∈ Rm and a target
y ∈ {−1, 1}, we may take, for a chosen κ > 0

c((x, y), (x′, y′)) = ∥x− x′∥qp + κ1{y ̸=y′} (4)

which is obviously continuous with respect to

d((x, y), (x′, y′)) = ∥x− x′∥p + 1{y ̸=y′}. (5)

This extends to mixed data with categorical, binary, and continuous variables; see e.g. [7].
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Parametric models and loss functions. Our setting covers all standard machine learning
models. Consider a parametric family F = {f(θ, ·) : θ ∈ Θ}, where the parameter space
Θ ⊂ Rp compact and the loss function f : Θ× Ξ→ R is jointly continuous. If Ξ is compact,
such a family is compact regarding ∥ · ∥∞. This situation covers regression models, k-means
clustering, and neural networks. For example: least-squares regression

f(θ, (x, y)) = (⟨θ, x⟩ − y)2, Ξ ⊂ Rm × R,

logistic regression

f(θ, (x, y)) = log
(
1 + e−y⟨θ,x⟩

)
, Ξ ⊂ Rm × {−1, 1},

and support vector machines with hinge loss

f(θ, (x, y)) = max {0, 1− y⟨θ, x⟩} , Ξ ⊂ Rm × {−1, 1}
Note that this function is not differentiable, due to the max term. The k-means model also
introduces a non-differentiable loss function:

f(θ, x) = min
i∈{1,...,K}

∥θi − x∥22, Θ ⊂ RK×m, Ξ ⊂ Rm.

Finally, most deep learning models fall in our setting. Indeed, they involve loss functions of
the form

f(θ, (x, y)) = ℓ(h(θ, x), y),

where ℓ is a dissimilarity measure, and h is a parameterized prediction function, built as a
composition of affine transformations (which are the parameters to train) with activation
functions (see e.g. [22, 25, 30]). Our setting is general enough to encompass all continuous
activation functions, even non-differentiable ones (as ReLU = max(0, ·)) as well as other
nonsmooth elementary blocks (as max-pooling [21], sorting procedures [32], and optimization
layers [2]). As already underlined in introduction, these examples involving non-differentiable
terms are not covered by existing results.

3 Main results

3.1 Wasserstein robust models

Our main result establishes a generalization bound (3) for Wasserstein distributionally robust
optimization (WDRO). Given a distribution Q ∈ P(Ξ) and a loss f ∈ F , the robust risk
around Q with radius ρ > 0 is then defined as

Rρ,Q(f) := max
Q′∈P(Ξ),Wc(Q,Q′)≤ρ

Eξ∼Q′ [f(ξ)]. (6)

In particular, taking Q = P̂n and Q = P in the above expression, we consider the empirical
robust risk, R̂ρ(f), and the true robust risk, Rρ(f):

R̂ρ(f) := Rρ,P̂n
(f) and Rρ(f) := Rρ,P (f). (7)

Our generalization result states as follows:
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Theorem 3.1 (Generalization guarantee for Wasserstein robust models). Under Assump-
tion 2.1, there exist α, β > 0 such that if

α√
n
< ρ <

ρcrit
2
− β√

n
,

then with probability at least 1− δ,

∀f ∈ F , R̂ρ(f) ≥ Eξ∼P [f(ξ)].

The quantity ρcrit is a critical radius, a relevant threshold that excludes degenerated
problems and flat losses for which Rρ(f) = maxΞ f . The exact generalization guarantee thus
holds for a wide range of radius ρ, growing with the sample size between the two extreme
cases 0 and ρcrit. As in Theorem 3.1 from [5], but adding the wide setting of Assumption 2.1,
the sample rates are dimension-free. The constants α and β depend on the problem quantities,
see Section 5 for a detailed discussion.

3.2 Regularized Wasserstein robust models

Part of the success of optimal transport in machine learning is the use of regularization,
and specifically entropic regularization, opening the way to nice properties and efficient
computational schemes [15, 28]. Recall that the entropy-regularized Wasserstein distance
writes, for a reference coupling π0 ∈ P(Ξ×Ξ)

W τ
c (P,Q) = inf

π∈P(Ξ×Ξ)
[π]1=P,[π2]=Q

{Eπ[c] + τ KL(π∥π0)} (8)

where KL is the Kullback-Leibler divergence w.r.t. π0:

KL(π∥π0) =
{∫

Ξ×Ξ
log dπ

dπ0
dπ when π ≪ π0

∞ otherwise.

Regularization have been recently studied in the context of WDRO: [38] introduces an
entropic regularization in constraints for computational interests, [5] considers an entropic
regularization in the objective for generalization, and [6] studies a general regularization in
both constraints and objective.

Following the most general case [6], we consider the robust risk with double regularization

Rτ,ϵ
ρ,Q(f) := sup

π∈P(Ξ×Ξ), [π]1=Q
Eπ [c]+τ KL(π∥π0)≤ρ

{
E[π]2 [f ]− ϵKL(π∥π0)

}
.

with two parameters ϵ > 0 and τ ≥ 0. Introducing the conditional moment of π0:

mc = max
ξ∈Ξ

Eζ∼π0(·|ξ)[c(ξ, ζ)], (9)

the generalization guarantee in this setting states as follows.
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Theorem 3.2 (Generalization for double regularization). Under Assumption 2.1, there exist
ατ,ϵ, βτ,ϵ>0 such that if

max

{
mc,

ατ,ϵ√
n

}
< ρ <

ρτ,ϵcrit

2
− βτ,ϵ√

n
,

then with probability at least 1− δ, for all f ∈ F and all Q such that W τ
c (P,Q) ≤ ρ,

R̂τ,ϵ
ρ (f) ≥ Eζ∼Q[f(ζ)]− ϵKL(πP,Q∥π0),

where πP,Q is the optimal coupling in (8).

This result is similar to the one of Theorem 3.1, it is also similar to the only other
generalization result existing for regularized WDRO [5]. Let us explicit below the main
differences. We will discuss in Section 5, the generalization constants such as the critical
radius ρτ,ϵcrit.

Unlike Wasserstein robust models (Theorem 3.1), regularization leads to an inexact
generalization guarantee, where the regularized empirical robust risk bounds a proxy for the
true risk EP [f ]. This is in line with the regularization in optimal transport that induces a
bias in the Wasserstein metric, preventing W τ

c (P, P ) from being null.
Compared to [5], we underline that our result covers also the double regularization case.

Moreover, it is valid for an arbitrary π0 whereas the one of [5] relies on the specific form π0
involving a Gaussian term. Our result is thus more flexible, allowing to choose conjointly c
and π0. For example, a Laplace distribution can be chosen when c is the ℓ1-norm.

Before moving on to the proof of the generalization results, let us come back to Figure 1.
To get this plot, we generated 500 instances of logistic regression problems with synthetic
classification data (n = 100, d = 5), for which we solve an associated robust counterpart
(with an ℓ1-cost c and a Laplace distribution π0(·|ξ))

min
θ

max
Eπ [∥·∥1]≤ρ
[π]1=P̂n

E(x,y)∼[π]2 [log(1 + ey⟨θ,x⟩)].

This setting is covered by Theorem 3.1 but not by existing results in previous works. Let
us check the realizations of the bound (3). Using 105 samples, we estimate the true risk
EP [f ] for computed optimal solutions f of the 500 instances. On the figure, we report the
proportion of instances for which the bound holds and we observe that when ρ increases, the
bound does hold true.

4 Proof strategy

This section presents our strategy to prove the generalization results of Section 3 (Theorems 3.1
and 3.2). The strength of our approach is to use flexible nonsmooth analysis arguments, able
to cover the general situation of arbitrary (continuous) cost and objective functions. After an
overview of the proof in Section 4.2, we explain the key mechanisms in Sections 4.3 and 4.4
and how they combine with a concentration theorem (Section 4.1) to show the results.

In Sections 4.2, 4.3 and 4.4 we consider the standard WDRO setting of Theorem 3.1.
The extension to the regularized setting of Theorem 3.2 is then explained in Section 4.5.
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Furthermore, in order to focus on the rationale we do not include the proofs in the core of
the paper and we refer precisely to corresponding results in the supplementary. We also
underline the fundamental results of probability and (nonsmooth) analysis that are used all
along. All the statements of this section implicitly assume that our Assumption 2.1 holds.

4.1 Uniform concentration inequality

In order to obtain high-probability bounds guarantees, uniform on F , we rely on a standard
uniform concentration inequality on a compact metric space. We recall the essential result
below, highlighting the two crucial properties on the random variable: (i) boundedness and
(ii) global Lipschitzness. We refer to e.g. [12] for general discussions, and to Theorem A.2 for
one-sided alternatives.

Theorem 4.1 (Uniform concentration). Let (X , dist) be a compact metric space, and X :
X × Ξ→ R be a measurable function. Assume the following:

(i) There exist a, b ∈ R such that X(x, ξ) ∈ [a, b] for all (x, ξ) ∈ X × Ξ.

(ii) X(·, ξ) is L-Lipschitz for all ξ ∈ Ξ.

Then with probability at least 1− δ,

sup
x∈X

∣∣∣Eξ∼P̂n
[X(x, ξ)]− Eξ∼P [X(x, ξ)]

∣∣∣ ≤ M√
n
.

M is a problem-dependent constant having the expression2

M = 48L I(X , dist) + (b− a)
√

2 log(2/δ).

We will apply this concentration result to two families of functions (ψ and ϕ) appearing
in our proof; to this end, we will establish the two points (i) and (ii) in Lemma 4.1 and
Lemma 4.3 respectively.

4.2 Proof’s overview

Compared to the original formulation (6), the dual representation of WDRO significantly
diminishes the problem’s degrees of freedom, and is usually the starting point of most studies.
Given any distribution Q ∈ P(Ξ), it holds that

Rρ,Q(f) = inf
λ≥0
{λρ+ Eξ∼Q[ϕ(λ, f, ξ)]} , (10)

where the dual generator ϕ is a convex function with respect to λ, and Lipschitz continuous
with respect to f . For Wasserstein robust models, ϕ has the expression (see e.g. [8])

ϕ(λ, f, ξ) = sup
ζ∈Ξ
{f(ζ)− λc(ξ, ζ)} .

2The constant I(X ,dist) is the standard Dudley’s entropy integral measuring the complexity of the space
X , that we further discuss in Definition A.4.
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Observe that ϕ is naturally convex in λ, but also nonsmooth. The originality of our approach
is to build on this nonsmoothness by using a rationale of nonsmooth analysis. Note also that
the convexity of ϕ will be a key property (see e.g. the argument of Figure 3).

Let us then outline the main steps to establish Theorem 3.1:

1. We establish in Section 4.4 the existence of a dual lower bound λlow, which holds with
high probability and uniformly on F , whenever ρ < ρcrit

2
− β√

n
:

R̂ρ(f) = inf
λ∈[λlow,∞)

{
λρ+ EP̂n

[ϕ(λ, f)]
}
.

2. As explained in Section 4.3, this leads to

R̂ρ(f) ≥ Rρ− α√
n
(f).

3. Finally, if furthermore α√
n
< ρ, then we capture the true risk on the right:

R̂ρ(f) ≥ EP [f ].

4.3 Concentration aspects by dual lower bound

We assume in this section that the empirical dual solution is lower bounded by a value λlow > 0
(with high probability), which means that the infimum in (10), with Q = P̂n, may be taken
over [λlow, 0) instead of R+. In this case, we can proceed as follows. For a distribution Q, we
use the shorthand EQ[ϕ] = Eξ∼Q[ϕ(λ, f, ξ)]. Then we can write for λ ≥ λlow,

λρ+ EP̂n
[ϕ] ≥ λ

(
ρ−

(EP [ϕ]− EP̂n
[ϕ]

λ

))
+ EP [ϕ]

≥ λ(ρ− αn) + EP [ϕ], (11)

where αn is a formal lower bound on the quotient term (formally defined (14)). Taking the
infimum over λ ≥ λlow, we obtain

R̂ρ(f) ≥ Rρ−αn(f) ≥ Eξ∼P [f(ξ)], (12)

whenever ρ > αn. This is the desired inequality of Theorem 3.1. Thus, in order to have (11)
with high probability for all f ∈ F , we introduce the function ψ of the variable µ = λ−1:

ψ(µ,f, ξ) :=µϕ(µ−1,f, ξ) = sup
ζ∈Ξ
{µf(ζ)−c(ξ, ζ)} (13)

and we study the gap αn defined by

αn := sup
{
Eξ∼P [ψ(µ, f, ξ)]− Eξ∼P̂n

[ψ(µ, f, ξ)]

: (µ, f) ∈ (0, λ−1
low]×F

}
. (14)

In order to obtain a high probability bound of the form αn ≤ α√
n
, boundedness (i)

and Lipschitz continuity (ii) of (µ, f) 7→ ψ(µ, f, ξ) are required by the concentration theo-
rem Theorem 4.1. In the expression (13), we remark that the Lipschitz constant of ψ(µ, f, ξ)
explodes as µ→∞, hence we must bound µ = λ−1 above. Thus, if a lower bound λlow holds
on λ, ψ satisfies the requirements of Theorem 4.1:
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Lemma 4.1. Given λlow > 0, then for almost all ξ ∈ Ξ,

(i) For all µ ∈ (0, λ−1
low] and f ∈ F ,

ψ(µ, f, ξ) ∈
[
−∥F∥∞

λlow
,
∥F∥∞
λlow

]
.

(ii) (µ, f) 7→ ψ(µ, f, ξ) is Lipschitz continuous on (0, λ−1
low]×F with constant ∥F∥∞ + λ−1

low.

Proof. See Lemma C.1.2 in the supplementary.

4.4 Getting a dual lower bound.

In order to get a dual lower bound, we proceed in two steps:

1. We show the existence of a dual lower bound on the true robust risk. This involves the
definition of an inherent maximal radius, which plays the role of a degeneracy threshold.

2. We show that the lower bound on the true robust risk transposes to the empirical
robust risk, with high probability and uniformly on F . This is done by expressing a
slope condition and applying the concentration inequality Theorem 4.1.

Dual bound on the true risk. In order to obtain a dual lower bound on the true robust
risk, it is sufficient for the (right-sided) derivative of λ 7→ λρ+Eξ∼P [ϕ(λ, f, ξ)] to be negative
for all f ∈ F on an interval [0, 2λlow]

3, with λlow > 0. This writes:

ρ ≤ Eξ∼P [−∂+λ ϕ(λ, f, ξ)], (15)

which implies that ρ has to be small. To obtain the condition (15) uniformly in f ∈ F ,
we introduce the maximal value of ρ allowed at a given λ ≥ 0 (illustrated in Figure 2):

Figure 2: A central object of our analysis: the
maximal radius ρmax, defined from the lower
envelope of derivatives of ϕ.

ρmax(λ) = inf
f∈F

Eξ∼P [−∂+λ ϕ(λ, f, ξ)]. (16)

As illustrated by Figure 2, ρmax reaches its high-
est value at zero. This is the critical radius,

ρcrit = ρmax(0).

This particular quantity will be discussed in Sec-
tion 5.2. As a central result of this work, we show
that ρmax can be made arbitrarily close to ρcrit as
λ→ 0+.

Lemma 4.2. limλ→0+ ρmax(λ) = ρcrit. In par-
ticular, there exists λlow > 0 such that for all
λ ∈ [0, 2λlow], for all f ∈ F ,

Eξ∼P [∂+λ ϕ(λ, f, ξ)] ≤ −
ρcrit
2
. (17)

3Although the factor 2 may not seem necessary at the moment, its role will become clearer in Section 4.4
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Proof. See Lemma D.1 in the supplementary.

This means that the derivative condition (15) is satisfied whenever ρ ≤ ρcrit
2
. In order to

transpose the inequality (17) to the empirical problem, precisely to obtain Eξ∼P̂n
[∂+λ ϕ(λ, f, ξ)] ≤

−ρcrit
2

with high probability, we would like to apply the concentration theorem (Theorem 4.1).
Unfortunately, the derivative ∂+λ ϕ(λ, ·, ξ) is discontinuous and doesn’t satisfy the Lipschitz
condition (ii) from Theorem 4.1. Indeed, its expression is inherently given by the envelope
formula (Theorem 2.8.2, [14]) involving an arg max:

∂+λ ϕ(λ, f, ξ) = −min
ζ∈Ξ
{c(ζ, argmax

Ξ
{f − λc(ξ, ·)}}.

Figure 3: Bounding from below the em-
pirical dual solution λ∗ expresses as a slope
condition (thanks to convexity of the objec-
tive).

Dual bound on the empirical risk. We propose
a simple way to overcome the limitation highlighted
above by relying on the convexity of ϕ. Indeed, given
a convex function g over R+, the infimum of g has
to occur on an interval [λlow,+∞] if g has a negative
slope between λlow and 2λlow (Figure 3):

g(2λlow)− g(λlow)
λlow

≤ 0 =⇒ inf
λ≥λlow

g(λ) = inf
λ≥0

g(λ).

We want this condition satisfied for the empirical
Lagrangian function g(λ) = λρ + EP̂n

[ϕ(λ, f)] with
high probability. For convenience, this can be ex-
pressed with the slope of EP̂n

[ϕ(·, f)]:

ŝ(f) :=
EP̂n

[ϕ(2λlow, f)]− EP̂n
[ϕ(λlow, f)]

λlow
≤ −ρ.

(18)
This is the condition we aim to obtain. To this end, we proceed by comparing the empirical
slope to the true one,

s(f) :=
EP [ϕ(2λlow, f)]− EP [ϕ(λlow, f)]

λlow
.

Indeed, we can show that any function (f, ξ) 7→ ϕ(λ, f, ξ), with λ ∈ R+, satisfies the
requirements for the concentration theorem (Theorem 4.1):

Lemma 4.3. For almost all ξ ∈ Ξ we have

(i) For all λ ≥ 0 and f ∈ F ,

ϕ(λ, f, ξ) ∈ [−∥F∥∞, ∥F∥∞].

(ii) For all λ ≥ 0, f 7→ ϕ(λ, f, ξ) is Lipschitz continuous on F with constant 1.

Proof. See Lemma C.1.1.
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Consequently, we can apply the concentration theorem twice, on each function ϕ(2λlow, ·, ·)
and ϕ(2λlow, ·, ·), to obtain that ŝ(f) approximates s(f) with high probability, up to a term
of the form β√

n
:

∀f ∈ F , ŝ(f) ≤ s(f) +
β√
n
.

On the other hand, s(f) ≤ EP [∂+λ ϕ(2λlow, f)] by convexity of ϕ, hence s(f) ≤ −ρcrit
2

by (17).
This means

ŝ(f) ≤ β√
n
− ρcrit

2
,

hence we have the desired condition (18) when

ρ <
ρcrit
2
− β√

n
.

4.5 Extension to (double) regularization.

The strategy of Section 4.2 is flexible enough to be extended to the regularized setting of
Section 3.2. Indeed, the regularized problem also has a dual representation, with a dual
generator defined by

ϕτ,ϵ(λ, f, ξ) = (ϵ+ λτ) logEζ∼π0(·|ξ)
[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
,

where ϵ > 0 and τ ≥ 0. Strong duality has been shown in [6]. We explain in Appendix B,
Proposition B.2 how it applies to our general setting. This regularized dual generator leads
to smooth counterparts of the key nonsmooth functions ψ, ρmax and ρcrit of the proof. In
particular, we can show the regularized version of Lemma 4.2.

Lemma 4.4. limλ→0+ ρ
τ,ϵ
max(λ) = ρτ,ϵcrit. In particular, there exists λτ,ϵlow > 0 such that for all

λ ∈ [0, 2λτ,ϵlow], ∀f ∈ F ,
Eξ∼P [∂λϕτ,ϵ(λ, f, ξ)] ≤ −

ρτ,ϵcrit

2
.

Then we obtain Theorem 3.2 by repeating the proof scheme ofSection 4.2. The core
results that simultaneously lead to Theorems 3.1 and 3.2 are gathered in Appendix E.1. Due
to the smoothness of ρτ,ϵmax, an expression of λτ,ϵlow can also be obtained; see Lemma D.2.

The key difference brought by regularization is that the Lipschitz property of ψτ,ϵ is lost
when µ→ 0. This is an inherent peculiarity of the regularized setting which may occur over
the whole family F and the space Ξ; see the example of Proposition F.2. This prevents to
use the concentration result without guaranteeing that we can set a lower bound on µ or
equivalently an upper-bound on λ. This is the purpose of the next lemma which establishes
the existence of such an upper-bound, for any distribution.

Lemma 4.5. Let Q ∈ P(Ξ) and λup := 2∥F∥∞
ρ−mc

. Then for all f ∈ F ,

Rρ,Q(f) = inf
λ∈[0,λup]

{λρ+ Eξ∼Q[ϕ(λ, f, ξ)]} .

Proof. See Lemma D.3 in the supplementary.
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5 On the generalization constants

In this section, we put our generalization results into perspective by further discussing the
bounds α, β, the critical radius ρcrit appearing in Theorem 3.1, as well as their regularized
counterparts of Theorem 3.2.

5.1 Sample complexity

We give the complete expressions of α, β, ατ,ϵ and βτ,ϵ in the detailed versions of Theorems 3.1
and 3.2 in Appendix E.2. Here we highlight their dependence from the problem’s constants.

First, in the setting of Theorem 3.1, α and β grow essentially with the size and the
complexity of F . Indeed, we have

α = O
(
I(F , ∥ · ∥∞)× ∥F∥∞

)
,

β = O
(
∥F∥∞ + I(F , ∥ · ∥∞)

)
.

(19)

The Dudley’s entropy I(F , ∥ · ∥∞) quantifies the complexity of F . In the large class of
Lipschitz functions, this quantity is exponential in the data dimension. In practice, most
machine learning problems involve a Lipschitz parametric family of losses (Section 2) in which
case I(F , ∥ · ∥∞) becomes proportional to

√
p, where p is the parameter’s dimension (see e.g.

Chapter 5.1 from [37]).
The constants α and β also grow with 1/λlow and we have α = O (1/λ2low) and β =

O (1/λlow). The constant λlow is implicitly defined and depends on the regularity at 0 of ρmax

(16), hence it may depend on F , Ξ, c and P .
In the setting of Theorem 3.2, we have similar interpretations. In addition to the

conditional momentmc (9), the constants α
τ,ϵ and βτ,ϵ also involve the second order conditional

moment:
m2,c = max

ξ∈Ξ
Eζ∼π0(·|ξ)[c(ξ, ζ)2].

They are parameters that may be chosen in practice and related to the reference coupling π0.

For instance, if π0(·|ξ) is a truncated Gaussian π0(·|ξ) ∝ e−
∥·−ξ∥2

2σ2 1Ξ and c(ξ, ζ) = 1
2
∥ξ − ζ∥2

we have mc ∝ σ2 and m2,c ∝ σ4.
The coefficients ατ,ϵ and βτ,ϵ exhibit similar relations with λτ,ϵlow, ∥F∥∞, and I(F , ∥ · ∥∞)

to their counterparts α and β (19). Regarding the hyperparameters mc, ϵ, τ and ρ, they
should be of comparable order according to the expression of ατ,ϵ (Theorem E.2). Compared
to the standard setting, we have an estimate of the lower bound λτ,ϵlow (Lemma D.2) showing

dependence on the loss family: 1/λτ,ϵlow = O
(
e

∥F∥∞
ϵ

)
.

5.2 The critical radius

In the standard setting, the critical radius has the expression

ρcrit = Eξ∼P
[
min

{
c(ξ, ζ) : ζ ∈ argmax

Ξ
f

}]
.

Assuming ρcrit > 0 excludes losses that remain constant across all samples from the ground
truth distribution P . This assumption reasonably aligns with practice and appeared in
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previous works [3, 5]. For instance, obtaining a predictor that precisely interpolates the
ground truth distribution (leading to a loss equal to zero everywhere) is unrealistic. It also
defines a threshold to exclude degenerated problems: if ρ > ρcrit, then there exists f ∈ F
such that Rρ(f) = maxΞ f and the problem becomes independent from ρ, see [5].

A similar interpretation can be made in the regularized case with smoothed counterparts.
Indeed, we can verify that if ρ > ρτ,ϵcrit, then there exists f ∈ F such that

Rτ,ϵ
ρ (f) = sup

π∈P(Ξ×Ξ),[π]1=P

{
E[π]2 [f ]−KL(π∥π0)

}
,

and the problem becomes independent from ρ, see in particular Proposition F.1 in the
supplementary.

6 Conclusion

In this work, we provide exact generalization guarantees of (regularized) Wasserstein robust
models, covering all usual machine learning situations, without restrictive assumptions (on
the Wasserstein metric or the class of functions). We achieve these universal results by
directly addressing the intrinsic nonsmoothness of robust problems. Our results thus give
users freedom when choosing the radius ρ: for all usual situations, it is not necessary to
consider specific regimes for ρ in order to expect good generalization from robust models.
Further research can now focus on practical aspects: it would be of premier interest to design
efficient practical procedures for selecting ρ, and more generally, scalable algorithms for
solving distributionally robust optimization problems.
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Supplementary Material

This supplementary gathers recalls, technical results, and examples, as well as, the
detailed proof of the results of the main text. The core of our contributions are presented in
Appendices D and E. The whole supplementary is organized as follows:

- In Appendix A, we recall some essential mathematical tools. They include a uniform
concentration inequality (Theorem A.2), continuity notions in nonsmooth analysis, and the
envelope formula to differentiate supremum functions (Theorem A.1).

- In Appendix B, we present strong duality results for WDRO and its regularized version.
We explain in particular how the duality theorem from [6] can be easily adapted to our
setting.

- Appendix C contains preliminary computations in view of applying the uniform concen-
tration theorem.

- In Appendix D, we demonstrate the existence of a dual lower bound in the standard
and regularized cases. In particular, the proofs involve the maximal radius introduced in
Section 4.4.

- By using these preliminary results, in Appendix E, we prove our main generalization
theorems (Theorem 3.1 and 3.2). Detailed versions with constants’ expressions are proved,
Theorem E.1 for the standard setting, and Theorem E.2 for the regularized setting.

- Appendix F contains minor results supporting several remarks found in the article. They
include the interpretation of the critical radius in the regularized case, a counter-example
justifying the upper-bound in the regularized case and the interpretation of the restrictive
compactness assumptions used in [5].

Notations

Throughout the proofs will use the following notations:

In Wasserstein robust models:

• ϕ(λ, f, ξ) = supζ∈Ξ {f(ζ)− λc(ξ, ζ)}

• ψ(µ, f, ξ) = µϕ(µ−1, f, ξ)

In Wasserstein robust models with double regularization:

• ϕτ,ϵ(λ, f, ξ) = (ϵ+ λτ) logEζ∼π0(·|ξ)
[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
• ψτ,ϵ(µ, f, ξ) = µϕτ,ϵ(µ−1, f, ξ)

Given a measurable function h : Ξ→ R and π ∈ P(Ξ) the Gibbs distribution πh is defined
as

dπh ∝ ehdπ.
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A Recalls and technical preliminaries

In this part, we use the notation G : X ⇒ Y to denote a function G defined on X and valued
in the set of subsets of Y .

Semicontinuity notions will be necessary to understand the proof of Lemma D.1. They
are regularity notions recurrently arising when manipulating nonsmooth convex functions.

Definition A.1 (Lower and upper semicontinuity, 2.42 in [1]). Let (X , dist) be a metric
space and let f : X → R. Then

1. f is called lower semicontinuous if for all x ∈ X , lim infy→x f(y) ≥ f(x).

2. f is called upper semicontinuous if for all x ∈ X , lim supy→x f(y) ≤ f(x).

In particular, if f is lower semicontinuous, then −f is upper semicontinuous.

Outer semicontinuity can be seen as the set-valued counterpart of upper semicontinuity:

Definition A.2 (Outer semicontinuity). Let X and Y two metric spaces. Then a measurable
and compact-valued map G : X ⇒ Y is called outer semicontinuous at x ∈ X if for all open
subset V ⊂ Y containing G(x), there exists a neighborhood U of x which is such that for all
w ∈ U , G(w) ⊂ V .

Semicontinuity of maximum and argmax functions are central to the proof of Lemma D.1:

Lemma A.1 (17.30 in [1]). Let X and Ξ be two metric spaces and let G : X ⇒ Ξ be outer
semicontinuous with nonempty compact values, h : Ξ×Ξ→ R continuous. Then the function

x 7→ max{h(x, v) : v ∈ G(x)}
is upper semicontinuous. In particular, u 7→ min{h(u, v) : v ∈ G(x)} is lower semicon-

tinuous.

Lemma A.2 (17.31 in [1]). If X is a metric space, (Ξ, d) is a compact metric space, and
h : X × Ξ→ R is continuous, then the function x 7→ maxz∈Ξ h(x, z) is continuous, and the
set-valued map x 7→ argmaxz∈Ξ h(x, z) is outer semicontinuous.

We recall the definition of gradient for a nonsmooth convex function. This the subdiffer-
ential.

Definition A.3 (Subdifferential of convex function). Let ϕ : Rm → R be a convex function.
Then we call subdifferential of ϕ the set-valued map ∂ϕ : Rm ⇒ Rm such that for all x ∈ Rm

and y ∈ Rm,
ϕ(y) ≥ ϕ(x) + ⟨v, y − x⟩ for all v ∈ ∂ϕ(x).

In particular, we may apply the envelope formula to compute the subdifferential of a
maximum function:

19



Theorem A.1 (Envelope formula, Corollary 1, Chapter 2.8 in [14]). Let (Ξ, d) be a compact
metric space and g : Rm × Ξ→ R such that

1. For all x ∈ Rm, g(x, ·) is continuous.

2. For all ζ ∈ Ξ, g(·, ζ) is convex with subdifferential ∂xg(·, ζ).

Then G := supζ∈Ξ g(·, ζ) is convex on Rm, and its subdifferential is given for all x ∈ Rm by

∂G(x) := conv{v : v ∈ ∂xg(x, ζ), ζ ∈ argmax
Ξ

g(x, ·)}.

where conv denotes the convex hull of a set.

A.1 Uniform concentration inequality

We recall a concentration inequality that gives a high probability uniform bound for a family
of bounded and Lipschitz functions. This is an extended version of Theorem 4.1 which details
the one-sided inequalities (without the absolute value). We refer the reader to [12] for a
complete reference on concentration inequalities, and Lemma G.2 in [5] for the proof of such
a result.

Theorem A.2 (Uniform concentration inequality, Lemma G.2 in [5]). Let (X , dist) be a
(totally bounded) separable metric space, P a probability distribution on a probability space Ξ,

and P̂n = 1
n

∑n
i=1 δξi with ξ1, . . . , ξn

i.i.d.∼ P . Consider a measurable mapping X : X × Ξ→ R
and assume that,

(i) There is a constant L > 0 such that, for each ξ ∈ Ξ, x 7→ X(x, ξ) is L-Lipschitz.

(ii) X(·, ξ) almost surely belongs to [a, b].

Then, for any δ ∈ (0, 1), we respectively have

1. With probability at least 1− δ,

sup
x∈X

{
Eξ∼P̂n

[X(x, ξ)]− Eξ∼P [X(x, ξ)]
}
≤ 48LI(X , dist)√

n
+ (b− a)

√
2
log 1

δ

n
.

2. With probability at least 1− δ,

sup
x∈X

{
Eξ∼P [X(x, ξ)]− Eξ∼P̂n

[X(x, ξ)]
}
≤ 48LI(X , dist)√

n
+ (b− a)

√
2
log 1

δ

n
.

The quantity I(X , dist) is defined as follows:

20



Definition A.4. Given a compact metric space (X , dist), Dudley’s entropy integral, I(X , dist),
is defined as

I(X , dist) :=
∫ ∞

0

√
logN(t,X , dist)dt

where N(t,X , dist) denotes the t-packing number of X , which is the maximal number of points
in X that are at least at a distance t from each other.

We may recall some properties of Dudley’s entropy for Cartesian products and segments
from R. These are known results, see e.g. [37] and Lemmas G.3 and G.4 from [5] for proofs.

Lemma A.3 (Dudley’s integral estimates).

1. (on Cartesian products) Let (X1, dist1) and (X2, dist2) be two metric spaces. Consider
the product space X := X1 ×X2 equipped with the distance dist := dist1+dist2. Then
we have the inequality

I(X , dist) ≤ I(X1, dist1) + I(X2, dist2).

2. (on R) Let c > 0. Then we have the inequality

I([0, c], | · |) ≤ 3c

2
.

B Strong duality

In this section, we recall duality results for WDRO [8] and its regularized version [6]. We
recall the Wasserstein distance with cost c for (Q,Q′) ∈ P(Ξ)× P(Ξ):

Wc(Q,Q
′) = inf

{
E(ξ,ζ)∼π[c(ξ, ζ)] : π ∈ P(Ξ× Ξ), [π]1 = Q, [π]2 = Q′} .

Proposition B.1 (Strong duality, standard WDRO). Under Assumption 2.1, for any
Q ∈ P(Ξ) and ρ > 0,

max
Wc(Q,Q′)≤ρ

Eξ∼Q′ [f(ξ)] = inf
λ≥0
{λρ+ Eξ∼Q[ϕ(λ, f, ξ)]} .

Proof. This is an application of Theorem 1 from [8]. In particular, Assumptions 1 and 2 from
[8] are satisfied through Assumption 2.1.

Proposition B.2 (Strong duality, regularized WDRO). Under Assumption 2.1, for any
Q ∈ P(Ξ) and ρ > 0,

max
π∈P(Ξ×Ξ)
[π]1=Q

Eπ [c]+τ KL(π∥π0)≤ρ

{
Eξ∼[π]2 [f(ζ)]− ϵKL(π∥π0)

}
= inf

λ≥0
{λρ+ Eξ∼Q[ϕτ,ϵ(λ, f, ξ)]} .

Proof. This is an application of Theorem 3.1 from [6], which is a corollary to Theorem 2.1 [6].
Note that the proofs of Theorems 2.1 and 3.1 from [6] can be easily extended to a general
compact metric space (Ξ, d), without being rewritten entirely. Precisely, only two arguments
in their proofs rely on the real-valued setting [31] but can be directly extended to a general
metric space as follows:
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• In the proof of Theorem 2.1 from [6], one needs to justify

sup {Eξ∼P [φ(ξ, ζ(ξ))] : ζ : Ξ→ Ξ measurable} ≥ Eξ∼P
[
sup
ζ∈Ξ

φ(ξ, ζ)

]
. (20)

To this end, the authors use the notion of normal integrand from [31]. Actually, (20)
holds true in a compact metric space: if φ is continuous, then by compactness of Ξ,
the set-valued map ξ 7→ argmaxζ∈Ξ φ(ξ, ζ) admits a measurable selection ζ∗, by the
measurable maximum theorem, see 18.19 in [1]. Such a selection ζ∗ then satisfies
φ(ξ, ζ∗(ξ)) = supζ∈Ξ φ(ξ, ζ) for all ξ ∈ Ξ, hence the result.

• In the proof of Theorem 3.1 from [6], gφ = supζ∈Ξ φ(·, ζ) is actually continuous by
Lemma A.2 and the approximation by the infimal convolutions (gφk )k∈N need not be
done.

Note also that the convexity of Ξ is not required in this proof (although stated in Assumption
1 from [6]).

C Concentration constants

In this part, we compute several constants in view of applying Theorem A.2 for the main
proofs of Appendix E.

C.1 Standard WDRO

The following lemma gathers Lemma 4.1 and Lemma 4.3. We compute bounds (i) and global
Lipschitz constants (ii) for ϕ and ψ.

Lemma C.1 (Concentration conditions for WDRO). we have the following:

1. (i) For all λ ≥ 0, f ∈ F and ξ ∈ Ξ, ϕ(λ, f, ξ) ∈ [−∥F∥∞, ∥F∥∞].

(ii) For all λ ≥ 0 and ξ ∈ Ξ, f 7→ ϕ(λ, f, ξ) is Lipschitz continuous on F with constant
1.

2. (i) Given λlow > 0, for all µ ∈ (0, λ−1
low] and f ∈ F , ψ(µ, f, ξ) ∈

[
−∥F∥∞

λlow
, ∥F∥∞
λlow

]
.

(ii) For all ξ ∈ Ξ, (µ, f) 7→ ψ(µ, f, ξ) is Lipschitz continuous on (0, λ−1
low] with constant

∥F∥∞ + λ−1
low.

Proof. 1. (i) Let (λ, f, ξ) ∈ R+ × F × Ξ. Recall that ϕ(λ, f, ξ) := supζ∈Ξ {f(ζ)− λc(ξ, ζ)}.
Since c is nonnegative, we have ϕ(λ, f, ξ) ≤ ∥F∥∞. On the other hand, since c(ξ, ξ) = 0, we
also have ϕ(λ, f, ξ) ≥ f(ξ) ≥ −∥F∥∞. Finally, we have ϕ(λ, f, ξ) ∈ [−∥F∥∞, ∥F∥∞].

(ii) Let λ ≥ 0, ξ ∈ Ξ and (f, f ′) ∈ F × F . For all ζ ∈ Ξ, we have

f(ζ)− λc(ξ, ζ)− ϕ(λ, f ′, ξ) ≤ f(ζ)− λc(ξ, ζ)− (f ′(ζ)− λc(ξ, ζ))
≤ f(ζ)− f ′(ζ)

≤ ∥f − f ′∥∞.
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Taking the supremum over ζ ∈ Ξ on the left-hand side gives ϕ(λ, f, ξ)−ϕ(λ, f ′, ξ) ≤ ∥f−f ′∥∞.
Permuting the roles of f and f ′ yields |ϕ(λ, f, ξ)− ϕ(λ, f ′, ξ)| ≤ ∥f − f ′∥∞. We proved that
ϕ(λ, ·, ξ) is 1-Lipschitz continuous.

2. (i) Now, let λlow > 0 and let (µ, f, ξ) ∈ (0, λ−1
low]×F × Ξ be arbitrary. Then we have

µϕ(µ−1, f, ξ) = sup
ζ∈Ξ
{µf(ζ)− c(ξ, ζ)} ≤ ∥F∥∞

λlow
.

On the other hand, using c(ξ, ξ) = 0 we obtain

sup
ζ∈Ξ
{µf(ζ)− c(ξ, ζ)} ≥ µf(ξ) ≥ −∥F∥∞

λlow
,

whence we have µϕ(µ−1, f, ξ) ∈
[
−∥F∥∞

λlow
, ∥F∥∞
λlow

]
.

(ii) Toward a proof of 2. (ii), let λlow > 0, and ξ ∈ Ξ and µ ∈ (0, λlow]. Remark that
µϕ(µ−1, f, ξ) = supζ∈Ξ {µf(ζ)− c(ξ, ζ)}. The function (µ, f) 7→ µϕ(µ−1, f, ξ) write as a
composition u ◦ v where u(h) := supζ∈Ξ {h(ζ)− c(ξ, ζ)} for h ∈ C(Ξ,R), and v(µ, f) := µf

for µ ∈ (0, λ−1
low]. u is 1-Lipschitz continuous with respect to ∥ · ∥∞. As to v, we can write

µf − µ′f ′ = µ(f − f ′) + f ′(µ− µ′),

whence v is clearly (∥F∥∞ + λ−1
low)-Lipschitz continuous on (0, λ−1

low] × F . By composition,
u ◦ v is Lipschitz continuous with constant ∥F∥∞ + λ−1

low.

C.2 Regularized WDRO

We will use the following lemma repeatedly:

Lemma C.2 (Lemma G.7 in [5]). Let g : Ξ → R be a measurable bounded function and
Q ∈ P(Ξ). Then one has the inequality

logEζ∼Q
[
eg(ζ)

]
≤ Eζ∼Q[g(ζ)eg(ζ)]

Eζ∼Q[eg(ζ)]
.

We prove the regularized version of Lemma C.1:

Lemma C.3 (Concentration conditions for regularized WDRO). Let ξ ∈ Ξ. Then

1. (i) For all λ ≥ 0 and f ∈ F , ϕτ,ϵ(λ, f, ξ) ∈ [−∥F∥∞ − λmc, ∥F∥∞] .

(ii) For all λ ≥ 0, f 7→ ϕτ,ϵ(λ, f, ξ) is Lipschitz continuous with constant 1.

2. (i) Given λlow > 0, for all µ ∈ [λ−1
up , λ

−1
low] and f ∈ F , ψτ,ϵ(µ, f, ξ) ∈

[
−∥F∥∞

λlow
−mc,

∥F∥∞
λlow

]
.

(ii) Given λup > 0, (µ, f) 7→ ψτ,ϵ(µ, f, ξ) is Lipschitz continuous on [λ−1
up , λ

−1
low] × F

with constant ∥F∥∞ + λ−1
low +

(
λupϵ

ϵ+λupτ

)
mc.
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Proof. 1. (i) Let (λ, f, ξ) ∈ R+ ×F × Ξ. For all ζ ∈ Ξ, e
f(ζ)−λc(ξ,ζ)

ϵ+λτ ≤ e
∥F∥∞
ϵ+λτ . This gives

ϕτ,ϵ(λ, f, ξ) ≤ (ϵ+ λτ) logEζ∼π0(·|ξ)
[
e

∥F∥∞
ϵ+λτ

]
= ∥F∥∞. (21)

On the other hand, e
f(ζ)−λc(ξ,ζ)

ϵ+λτ ≥ e
−∥F∥∞−λc(ξ,ζ)

ϵ+λτ , which gives

ϕτ,ϵ(λ, f, ξ) ≥ (ϵ+ λτ) log
(
e−

∥F∥∞
ϵ+λτ Eζ∼π0(·|ξ)

[
e−

λc(ξ,ζ)
ϵ+λτ

])
≥ −∥F∥∞ + (ϵ+ λτ) logEζ∼π0(·|ξ)

[
e−

λc(ξ,ζ)
ϵ+λτ

]
≥ −∥F∥∞ − λmc, (22)

where for the last inequality we used Jensen’s inequality on the convex function s 7→ e−
λs

ϵ+λτ .
Combining (21) and (22) gives

ϕτ,ϵ(λ, f, ξ) ∈ [−∥F∥∞ − λmc, ∥F∥∞].

(ii) Let ξ ∈ Ξ and λ ≥ 0. To compute the Lipschitz constant of f 7→ ϕτ,ϵ(λ, f, ξ), we compute
the derivative of hv : t 7→ ϕτ,ϵ(λ, f + tv, ξ) where t ∈ R and for an arbitrary direction v ∈ F .
We have

hv(t) = (ϵ+ λτ) logEζ∼π0(·|ξ)
[
e

f(ζ)+tv(ζ)−λc(ξ,ζ)
ϵ+λτ

]
.

It is easy to verify that h′v(t) = E
ζ∼π

f+tv−λc(ξ,·)
ϵ+λτ

0 (·|ξ)
[v(ζ)] , whence |h′v(t)| ≤ ∥v∥∞. This

means that ϕτ,ϵ(λ, ·, ξ) has Lipschitz constant 1.
2. (i) Let λlow > 0 and (µ, f, ξ) ∈ (0, λ−1

low] × F × Ξ. λ. We deduce from (21) and (22),
with λ = µ−1, that

µϕτ,ϵ(µ−1, f, ξ) ∈
[
−∥F∥∞

λlow
−mc,

∥F∥∞
λlow

]
.

(ii) Now, let ξ ∈ Ξ. Our goal is to compute a Lipschitz constant of (µ, f) 7→ µϕτ,ϵ(µ−1, f, ξ)
on [λ−1

up , λ
−1
low]×F . We first compute a Lipschitz constant of

hf : µ 7→ µϕτ,ϵ(µ−1, f, ξ) = (µϵ+ τ) logEζ∼π0(·|ξ)
[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
on [λ−1

up , λ
−1
low], for an arbitrary f ∈ F . The derivative of hf is

h′f (µ) =
1

µϵ+ τ

Eζ∼π0(·|ξ)
[
(ϵc(ξ, ζ) + τf(ζ))e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
Eζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

] + ϵ logEζ∼π0(·|ξ)
[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
,

which we write

h′f (µ) = E
π

µf−c(ξ,·)
µϵ+τ

0 (·|ξ)

[
ϵc(ξ, ζ) + τf(ζ)

µϵ+ τ

]
+ ϵ logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
. (23)
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We bound h′f (µ) above. By Lemma C.2 with Q = π0(·|ξ) and g = µf−c(ξ,·)
µϵ+τ

, we have that

ϵ logEζ∼π0(·|ξ)
[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
≤ E

ζ∼π
µf−c(ξ,·)

µϵ+τ
0 (·|ξ)

[
ϵµf(ζ)− ϵc(ξ, ζ)

µϵ+ τ

]
which gives h′f (µ) ≤ E

ζ∼π
µf−c(ξ,·)

µϵ+τ
0

[f(ζ)] ≤ ∥F∥∞.

Now we bound h′f (µ) below. We start with the first term in (23). Since c is nonnegative,
we clearly have

E
π

µf−c(ξ,·)
µϵ+τ

0 (·|ξ)

[
ϵc(ξ, ζ) + τf(ζ)

µϵ+ τ

]
≥ −τ∥F∥∞

µϵ+ τ
(24)

As to the second term of (23), we have by Jensen’s inequality,

ϵ logEζ∼π0(·|ξ)
[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
≥ −ϵµ∥F∥∞

µϵ+ τ
− ϵmc

µϵ+ τ
(25)

Combining (24) and (25) gives h′f (µ) ≥ −∥F∥∞ − λupϵmc

ϵ+λupτ
. Finally, hf has Lipschitz constant

∥F∥∞ + λupmc

ϵ+λupτ

Since ϕτ,ϵ(µ−1, ·, ξ) has Lipschitz constant 1, then µ ≤ λ−1
low, the function µϕτ,ϵ(µ−1, ·, ξ)

has Lipschitz constant λ−1
low.

Now, we can obtain a Lipschitz constant for

h : (µ, f) 7→ (µϵ+ τ) logEζ∼π0(·|ξ)
[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
= ψτ,ϵ(µ, f, ξ).

Indeed, for (µ, µ′) ∈ [λ−1
up , λ

−1
low]× [λ−1

up , λ
−1
low] and (f, f ′) ∈ F × F , we can write

|h(µ, f)− h(µ′, f ′)| ≤ |h(µ, f)− h(µ′, f)|+ |h(µ′, f)− h(µ′, f ′)|

≤
(
∥F∥∞ +

(
λupϵ

ϵ+ λupτ

))
|µ− µ′|+ λ−1

low∥f − f ′∥∞.

hence h has Lipschitz constant ∥F∥∞ + λ−1
low +

(
λupϵ

ϵ+λupτ

)
mc.

D Dual bounds and maximal radius

We establish the existence of a dual lower bound on the true robust risk, for the standard
WDRO problem in D.1 and for regularized WDRO in D.2. The proofs involve the maximal
radius introduced in Section 4.4. For the regularized case, an estimate of the dual lower
bound is provided.

D.1 Standard WDRO: continuity at zero of the maximal radius

For λ ≥ 0, we consider the following quantities:

ρcrit = inf
f∈F

Eξ∼P [−∂+λ ϕ(0, f, ξ)] ρmax(λ) = inf
f∈F

Eξ∼P [−∂+λ ϕ(λ, f, ξ)].
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Lemma D.1. limλ→0+ ρmax(λ) = ρcrit.

Proof. For ξ ∈ Ξ, f − λc(ξ, ·) is continuous, hence we can apply the envelope formula
(Theorem A.1) and the right-sided derivative of ϕ with respect to λ is ∂+λ ϕ(λ, f, ξ) =
−min {c(ξ, ζ) : ζ ∈ argmaxΞ {f − λc(ξ, ·)}}. For convenience, we use the shorthand

c∗(ξ,K) := min{c(ξ, z), z ∈ K}
whenever K ⊂ Ξ is compact. By integration, we obtain

ρmax(λ) = Eξ∼P [c∗(ξ, argmax
Ξ

{f − λc(ξ, ·)})]. (26)

In particular,
ρcrit = inf

f∈F
Eξ∼P [c∗(ξ, argmax

Ξ
f)].

To prove the result, it is sufficient to show that lim infk→∞ ρmax(λk) ≥ ρcrit for any positive
sequence (λk)k∈N converging to 0. Indeed, the functions Eξ∼P [ϕ(·, f, ξ)] are convex hence their
right-sided derivatives Eξ∼P [−∂+λ ϕ(·, f, ξ)] are nonincreasing, and ρmax is nonincreasing since
it is an infimum over nonincreasing functions. This means lim supk→∞ ρmax(λk) ≤ ρmax(0) for
any sequence λk → 0.

Now assume toward a contradiction that there exists ϵ > 0 and a sequence (λk)k∈N from R+,
such that λk → 0 as k →∞, and ρmax(λk) ≤ ρcrit−ϵ for all k ∈ N. From the expression of ρmax

(26) this means that for each k, there exists fk such that Eξ∼P [c∗(ξ, argmaxΞ fk−λkc(ξ, ·))] ≤
ρcrit − ϵ

2
. By compactness of F with respect to ∥ · ∥∞, we may assume (fk)k∈N to converge to

some f ∗ ∈ F . In particular, for ξ ∈ Ξ, fk,−λkc(ξ, ·) converges to f ∗ as k →∞.
Let ξ ∈ Ξ be arbitrary. (λ, f) 7→ argmaxΞ {f − λc(ξ, ·)} is outer semicontinuous with com-

pact values (Lemma A.2) and c is jointly continuous, hence (λ, f) 7→ c∗(ξ, argmaxΞ {f − λc(ξ, ·))}
is lower semicontinuous, see Lemma A.1. We then have lim infk→∞ c∗(ξ, argmaxΞ {fk − λkc(ξ, ·)}) ≥
c∗(ξ, argmaxΞ f

∗). By integration with respect to ξ ∼ P , we obtain

Eξ∼P [c∗(ξ, argmax
Ξ

f ∗)] ≤ Eξ∼P [lim inf
k→∞

c∗(ξ, argmax
Ξ

{fk − λkc(ξ, ·)})]

≤ lim inf
k→∞

Eξ∼P [c∗(ξ, argmax
Ξ

{fk − λkc(ξ, ·)})]

≤ ρcrit −
ϵ

2
.

Since, ρcrit ≤ Eξ∼P [c∗(ξ, argmaxΞ f
∗)], this yields a contradiction. Finally,

limλ→0+ ρmax(λ) = ρcrit.

D.2 Regularized WDRO: Lipschitz maximal radius and upper-
bound

For λ ≥ 0, we consider the regularized counterparts

ρτ,ϵcrit = inf
f∈F

Eξ∼P [−∂λϕτ,ϵ(0, f, ξ)],

ρτ,ϵmax(λ) = inf
f∈F

Eξ∼P [−∂λϕτ,ϵ(λ, f, ξ)].
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D.2.1 Lipschitz continuity of the maximal radius

Lemma D.2. ρτ,ϵmax : [0,∞)→ R is Lipschitz continuous with constant

2

ϵ

(
τ 2

ϵ2
∥F∥2∞ +m2,ce

∥F∥∞
ϵ

+min{mc
τ
,
2∥F∥∞mc
(ρ−mc)ϵ

}
)
.

In particular, if

λτ,ϵlow :=
ϵρτ,ϵcrit

8
(
τ2

ϵ2
∥F∥2∞ +m2,ce

∥F∥∞
ϵ

+min{mc
τ
,
2∥F∥∞mc
(ρ−mc)ϵ

}) , (27)

then ρmax(λ) ≥ ρcrit
2

for all λ ∈ [0, 2λτ,ϵlow].

Proof. ϕτ,ϵ is differentiable with respect to λ and we can verify that its derivative is given by

∂λϕ
τ,ϵ(λ, f, ξ) = −E

ζ∼π
f−λc(ξ,·)

ϵ+λτ
0 (·|ξ)

[
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

]
+ τ logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
.

For f ∈ F and ξ ∈ Ξ, our goal is to compute the Lipschitz constant of λ 7→ ∂λϕ
τ,ϵ(λ, f, ξ).

The Lipschitz constant of ρτ,ϵmax will then be obtained by integration and taking the infimum
over Lipschitz functions. We compute the appropriate quantities:

1. We compute the derivative with respect to λ of u1 : (λ, ζ) 7→ −
(
τf(ζ)+ϵc(ξ,ζ)

ϵ+λτ

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ .

This is

∂λu1(λ, ζ) =

(
τ 2f(ζ) + ϵτc(ξ, ζ)

(ϵ+ λτ)2
+

(τf(ζ) + ϵc(ξ, ζ))2

(ϵ+ λτ)3

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ .

2. We compute the derivative with respect to λ of u2 : (λ, ζ) 7→ e
f(ζ)−λc(ξ,ζ)

ϵ+λτ , this is

∂λu2(λ, ζ) = −
(
τf(ζ) + ϵc(ξ, ζ)

(ϵ+ λτ)2

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ .

3. We compute the derivative of U3 : λ 7→ τ logEζ∼π0(·|ξ)
[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
. This is

U ′
3(λ) = −

Eζ∼π0(·|ξ)
[(

τ2f(ζ)+τϵc(ξ,ζ)
(ϵ+λτ)2

)
e

f(ζ)−λc(ξ,ζ)

ϵ+λτ2

]
Eζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

] .
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Combining 1, 2 and 3, we are able to compute the derivative of ∂λϕ
τ,ϵ:

∂2λϕ
τ,ϵ(λ, f, ξ) = −Eζ∼π0(·|ξ)[u1(λ, ζ)]Eζ∼π0(·|ξ)[∂λu2(λ, ζ)]

Eζ∼π0(·|ξ)[u2(λ, ζ)]2
+ U ′

3(λ)

=
Eζ∼π0(·|ξ)

[
(τf(ζ)+ϵc(ξ,ζ))2

(ϵ+λτ)3
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
Eζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
−

Eζ∼π0(·|ξ)
[(

τf(ζ)+ϵc(ξ,ζ)
(ϵ+λτ)2

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
Eζ∼π0(·|ξ)

[(
τf(ζ)+ϵc(ξ,ζ)

ϵ+λτ

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
Eζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
=

1

ϵ+ λτ
Var

ζ∼π
f−λc(ξ,·)

ϵ+λτ (·|ξ)

(
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

)
,

where Var
ζ∼π

f−λc(ξ,·)
ϵ+λτ (·|ξ)

is the variance with respect to π
f−λc(ξ,·)

ϵ+λτ (·|ξ).
Note that all quantities can be differentiated under the (conditional) expectation since the

derivatives with respect to λ involve functions that are continuous on the compact sample
space Ξ (they are therefore bounded by a constant), see e.g. Theorem A.5.3 from [17]. By
the property of the variance, we obtain

|∂2λϕτ,ϵ(λ, f, ξ)| ≤
1

ϵ+ λτ
E
ζ∼π

f−λc(ξ,·)
ϵ+λτ

0 (·|ξ)

[(
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

)2
]

≤ 2

ϵ3
E
ζ∼π

f−λc(ξ,·)
ϵ+λτ

0 (·|ξ)

[
τ 2∥F∥2∞ + ϵ2c(ξ, ζ)2

]
. (28)

Now we bound the right-hand side of the last inequality. First, we have

Eζ∼π0(·|ξ)
[
c(ξ, ζ)2e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
≤ m2,ce

∥F∥∞
ϵ (29)

On the other hand, by Jensen’s inequality, we have

Eζ∼π0(·|ξ)
[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
≥ e−

λmc
ϵ+λτ

− ∥F∥∞
ϵ (30)

We have the alternatives λmc

ϵ+λτ
≤ λupmc

ϵ
= 2∥F∥∞mc

(ρ−mc)ϵ
in any case, and λmc

ϵ+λτ
≤ mc

τ
whenever τ > 0.

This means λmc

ϵ+λτ
≤ min

{
mc

τ
, 2∥F∥∞mc

(ρ−mc)ϵ

}
.

Dividing (29) by (30), we obtain E
ζ∼π

f−λc(ξ,·)
ϵ+λτ

0 (·|ξ)
[c(ξ, ζ)2] ≤ m2,ce

min{mc
τ
,
2∥F∥∞mc
(ρ−mc)ϵ

}e 2∥F∥∞
ϵ .

Reinjecting this inequality in (28) gives

|∂2λϕτ,ϵ(λ, f, ξ)| ≤
2

ϵ

(
τ 2

ϵ2
∥F∥2∞ +m2,ce

2∥F∥∞
ϵ

+min{mc
τ
,
2∥F∥∞mc
(ρ−mc)ϵ

}
)

:= L. (31)

This means that for f ∈ F , the function g : (λ, f) 7→ Eξ∼P [−∂λϕτ,ϵ(λ, f, ξ)] is L-Lipschitz
where L is given by (31).
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We then show that ρτ,ϵmax := inff∈F g(·, f) is L-Lipschitz continuous. Let (λ, λ′) ∈ R2, and
let (fk)k∈N be a sequence from F such that g(λ′, fk) →

k→∞
ρτ,ϵmax(λ

′). Then by definition of

ρτ,ϵmax, we have for all k ∈ N,

ρτ,ϵmax(λ)− g(λ′, fk) ≤ g(λ, fk)− g(λ′, fk) ≤ L|λ− λ′|.
Taking the limit as k →∞ gives ρτ,ϵmax(λ)− ρτ,ϵmax(λ

′) ≤ L|λ− λ′|. Exchanging the roles of λ
and λ′ gives |ρτ,ϵmax(λ)− ρτ,ϵmax(λ

′)| ≤ L|λ− λ′|, hence ρτ,ϵmax is L-Lipschitz.
Now, set 2λτ,ϵlow := sup {λ ∈ R+ : ρτ,ϵmax(λ) ≥ ρτ,ϵcrit/2}. Then either λτ,ϵlow =∞ (in which case

any value λτ,ϵlow satisfies the desired property), or by continuity of ρτ,ϵmax, ρ
τ,ϵ
max(2λ

τ,ϵ
low) = ρτ,ϵcrit/2

and we have ρτ,ϵcrit − 2Lλτ,ϵlow ≤ ρmax(2λ
τ,ϵ
low) = ρτ,ϵcrit/2. Finally we thus get (27).

D.2.2 Dual upper-bound

The following result allows to bound the dual solution above. This requirement is specific to
the regularized setting, see in particular Proposition F.2 for an example.

Lemma D.3 (Upper bound for the regularized problem Lemma 4.5). Assume ρ > mc and

let λup := 2∥F∥∞
ρ−mc

. For all f ∈ F and Q ∈ P(Ξ),

inf
λ∈[0,∞)

{λρ+ Eξ∼Q[ϕτ,ϵ(λ, f, ξ)]} = inf
λ∈[0,λup)

{λρ+ Eξ∼Q[ϕτ,ϵ(λ, f, ξ)]} .

Proof. Let ξ ∈ Ξ be arbitrary. Recall that

∂λϕ
τ,ϵ(λ, f, ξ) = −E

ζ∼π
f−λc(ξ,·)

ϵ+λτ
0 (·|ξ)

[
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

]
+ τ logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
.

We bound −∂λϕτ,ϵ(λ, f, ξ) above, uniformly in f ∈ F and ξ ∈ Ξ. For readability of the proof,

we set π̃0 = π
f−λc(ξ,·)

ϵ+λτ

0 with a slight abuse of notation. In this case, we have

Eζ∼π̃0(·|ξ)
[
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

]
= Eζ∼π̃0(·|ξ)

[
λτf(ζ) + λϵc(ξ, ζ)− ϵf(ζ) + ϵf(ζ)

λ(ϵ+ λτ)

]
=

1

λ
Eζ∼π̃0(·|ξ) [f(ζ)]−

ϵ

λ
Eζ∼π̃0(·|ξ)

[
f(ζ)− λc(ξ, ζ)

ϵ+ λτ

]
≤ ∥F∥∞

λ
− ϵ

λ
logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
≤ ∥F∥∞

λ
− ϵ

λ(ϵ+ λτ)

(
Eζ∼π0(·|ξ)[f(ζ)− λc(ξ, ζ)]

)
≤ ∥F∥∞

λ
+

ϵ∥F∥∞
λ(ϵ+ λτ)

+
ϵmc

ϵ+ λτ
, (32)

where for the third line, we used Lemma C.2, and for the fourth line, we used Jensen’s
inequality. On the other hand,

−τ logEζ∼π0(·|ξ)
[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
≤ − τ

ϵ+ λτ
Eζ∼π0(·|ξ)[f(ζ)− λc(ξ, ζ)]

≤ λτ

λ(ϵ+ λτ)
∥F∥∞ +

λτ

ϵ+ λτ
mc (33)
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Summing (32) and (33) gives

−∂λϕτ,ϵ(λ, f, ξ) ≤
2∥F∥∞
λ

+mc,

whence assuming ρ > mc, and taking λ = λup := 2∥F∥∞
ρ−mc

, we obtain for all f ∈ F and all
ξ ∈ Ξ,

0 ≤ ρ+ ∂λϕ
τ,ϵ(λup, f, ξ).

Integrating with respect to a distribution Q ∈ P(Ξ) yields

0 ≤ ρ+ Eξ∼Q[∂λϕτ,ϵ(λup, f, ξ)],

which is the derivative at λup of the convex function λ 7→ λρ+Eξ∼Q [ϕτ,ϵ(λ, f, ξ)]. This means

inf
λ∈[0,∞)

{λρ+ Eξ∼Q [ϕτ,ϵ(λ, f, ξ)]} = inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕτ,ϵ(λ, f, ξ)]
}
.

E Proof of the main results

In this section, we prove the main results of the paper: Theorems 3.1 and 3.2. First, we
establish the core concentration results in E.1 that apply to standard and regularized WDRO.
In particular, the slope condition presented in Section 4.4 is used there to establish the dual
lower bound with high probability. Then we deduce the main theorems in E.2 and compute
the generalization constants.

E.1 Dual bounds with high probability on the empirical problem

All the results of this subsection hold for both standard and regularized cases. The proofs
hold as is, replacing ϕ, ψ, ρcrit, ρmax and λlow by ϕτ,ϵ, ψτ,ϵ, ρτ,ϵcrit, ρ

τ,ϵ
max and λτ,ϵlow respectively.

For λ ≥ 0, we recall the quantities

ρcrit = inf
f∈F

Eξ∼P [−∂+λ ϕ(0, f, ξ)], ρmax(λ) = inf
f∈F

Eξ∼P [−∂+λ ϕ(λ, f, ξ)].

Problem’s constants. Before proving the next results, we introduce several quantities:

Proposition E.1 (Dual lower bound in the true problem). Under Assumption 2.1, there
exists λlow > 0 such that for all λ ∈ [0, 2λlow], ρmax(λ) ≥ ρcrit

2
. In particular, for all f ∈ F ,

Eξ∼P [∂+λ ϕ(λ, f, ξ)] ≤ −ρcrit
2
.

Proof. This comes from limλ→0+ ρmax(λ) = ρcrit. See lemma D.1 for standard WDRO and
lemma D.2 for the regularized case.

Let λlow > 0 be given by Proposition E.1. For the next results, we define the following
quantities:
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• Φ is the length of a segment I such that ϕ(λ, f, ξ) ∈ I for all λ ∈ {λlow, 2λlow}, f ∈ F
and ξ ∈ Ξ,

• Ψ is the length of a segment J such that ψ(µ, f, ξ) ∈ J for all µ ∈ (0, λ−1
low], f ∈ F and

ξ ∈ Ξ,

• Lψ and λup ∈ [0,∞] are such that ψ(·, ·, ξ) is Lψ-Lipschitz on [λ−1
up , λ

−1
low] × F for all

ξ ∈ Ξ.

With the above quantities, we can prove the following:

Proposition E.2 (Dual lower bound with high probability). Under Assumption 2.1, let

λlow be given by Proposition E.1, and λup ∈ [λlow,∞]. If ρ ≤ ρcrit
2
− 2C(δ)

λlow
√
n
where C(δ) :=

48I(F , ∥ · ∥∞) + Φ
√

2 log 4
δ
, then with probability 1− δ

2
, for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(, λ, f, ξ)]
}
= inf

λ∈[λlow,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
.

Proof. Let λ ∈ {λlow, 2λlow}. For ξ ∈ Ξ, the function f 7→ ϕ(λ, f, ξ) is Lipschitz with constant
1, see Lemma C.1 and Lemma C.3. Then we can apply Theorem A.2, to have with probability
at least 1− δ

4
, for all f ∈ F ,

Eξ∼P̂n
[ϕ(2λlow, f, ξ)]− Eξ∼P [ϕ(2λlow, f, ξ)] ≤

48I(F , ∥ · ∥∞)√
n

+ Φ

√
2 log 4

δ

n
(34)

and with probability at least 1− δ
4
, for all f ∈ F ,

Eξ∼P [ϕ(λlow, f, ξ)]− Eξ∼P̂n
[ϕ(λlow, f, ξ)] ≤

48I(F , ∥ · ∥∞)√
n

+ Φ

√
2 log 4

δ

n
. (35)

We set C(δ) := 48I(F , ∥ · ∥∞) + Φ
√

2 log 4
δ
. Intersecting the events (34) and (35), we obtain

that with probability 1− δ
2
, for all f ∈ F ,

Eξ∼P̂n
[ϕ(2λlow, f, ξ)]− Eξ∼P̂n

[ϕ(λlow, f, ξ)]

λlow

≤ 1

λlow

(
Eξ∼P [ϕ(2λlow, f, ξ)]− Eξ∼P [ϕ(λlow, f, ξ)] +

2C(δ)√
n

)
≤ Eξ∼P [∂+λ ϕ(2λlow, f, ξ)] +

2C(δ)

λlow
√
n

≤ −ρcrit
2

+
2C(δ)

λlow
√
n
, (36)

where we recall that for λlow > 0, satisfies for all λ ∈ [0, 2λlow] and all f ∈ F , Eξ∼P [∂+ϕ(λ, f, ξ)] ≤
−ρcrit

2
. For λ ≥ 0 and f ∈ F , we set gf(λ) = λρ + Eξ∼P̂n

[ϕ(λ, f, ξ)]. Then from (36), we

deduce with probability at least 1− δ
2
, for all f ∈ F ,

gf (2λlow)− gf (λlow)
λlow

= ρ− ρcrit
2

+
2C(δ)

λlow
√
n
.
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This means that if ρ ≤ ρcrit
2
− 2C(δ)

λlow
√
n
, then with probability at least 1− δ

2
, for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
= inf

λ∈[λlow,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
.

This implies a generalization bound on the dual problem of (regularized) WDRO:

Proposition E.3 (Generalization bound on the dual problem). Under Assumption 2.1, let

λlow > 0 be given by Proposition E.1. If B(δ)√
n
≤ ρ ≤ ρcrit

2
− 2C(δ)

λlow
√
n
where

• B(δ) = 48Lψ

(
I(F , ∥ · ∥∞) + 2

λlow

)
+Ψ

√
2 log 2

δ
,

• C(δ) = 48I(F , ∥ · ∥∞) + Φ
√
2 log 4

δ
,

then with probability at least 1− δ, for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
≥ inf

λ∈[0,∞)

{
λ

(
ρ− B(δ)√

n

)
+ Eξ∼P [ϕ(λ, f, ξ)]

}
.

Proof. We assume λup > λlow. By Theorem A.2, applied to (µ, f) 7→ µϕ(µ−1, f, ξ), we obtain
with probability at least 1− δ

2
,

αn := sup
(µ,f)∈(λ−1

up ,λ
−1
low]×F

{Eξ∼P [ψ(µ, f, ξ)]− Eξ∼P̂n
[ψ(µ, f, ξ)]} ≤ B(δ)√

n
(37)

where B(δ) = 48LψI([0, λ−1
low] × F , dist) + Ψ

√
2 log 2

δ
and dist((µ, f), (µ′, f ′)) := |µ − µ′| +

∥f − f ′∥∞. Furthermore, we have the inequality

I([0, λ−1
low]×F) ≤ I(F , ∥ · ∥∞) +

1

2λlow
(1 + 2 log 2) ≤ I(F , ∥ · ∥∞) +

2

λlow
,

see Lemma A.3, hence we may refine B(δ) as B(δ) = 48Lψ

(
I(F , ∥ · ∥∞) + 2

λlow

)
+Ψ

√
2 log 2

δ
.

By Proposition E.2, if ρ ≤ ρcrit
2
− 2C(δ)

λlow
√
n
where C(δ) := 48I(F , ∥ · ∥∞) + Φ

√
2 log 4

δ
, then

with probability at least 1− δ
2
, for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
= inf

λ∈[λlow,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
. (38)

Finally, combining (38) and (37), and if

B(δ)√
n
≤ ρ ≤ ρcrit

2
− 2C(δ)

λlow
√
n
,

32



we can write with probability 1− δ, for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
= inf

λ∈[λlow,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}

≥ inf
λ∈[λlow,λup)

{
λρ+ Eξ∼P [ϕ(λ, f, ξ)]− λ

Eξ∼P [ϕ(λ, f, ξ)]− Eξ∼P̂n
[ϕ(λ, f, ξ)]

λ

}
≥ inf

λ∈[λlow,λup)
{λρ+ Eξ∼P [ϕ(λ, f, ξ)]− λαn}

≥ inf
λ∈[λlow,λup)

{
λ

(
ρ− B(δ)√

n

)
+ Eξ∼P [ϕ(λ, f, ξ)]

}
≥ inf

λ∈[0,∞)

{
λ

(
ρ− B(δ)√

n

)
+ Eξ∼P [ϕ(λ, f, ξ)]

}
,

If λup ≤ λlow, this means, by convexity of the inner function,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
= λlowρ+ Eξ∼P̂n

[ϕ(λlow, f, ξ)]

≥ λlow(ρ− α′
n) + Eξ∼P [ϕ(λlow, f, ξ)]

≥ inf
λ∈[0,∞)

{
λ

(
ρ− B(δ)√

n

)
+ Eξ∼P [ϕ(λ, f, ξ)]

}
,

where we refined αn into α′
n = supf∈F

{
Eξ∼P [ψ(λ−1

low, f, ξ)]− Eξ∼P̂n
[ψ(λ−1

low, f, ξ)]
}
.

E.2 Proof of the main results

We are now ready to prove our main results.
The following is an extended version of the generalization result in standard WDRO

(Theorem 3.1). Note that the extended bound (39) involves a control of Rρ− α√
n
(f), which

means that R̂ρ(f) also generalize well against for distribution shifts.

Theorem E.1 (Generalization guarantee, standard WDRO). Under Assumption 2.1, there
exists λlow > 0 such that if

α√
n
< ρ <

ρcrit
2
− β√

n
,

where

• α = 48
(
∥F∥∞ + 1

λlow

)(
I(F , ∥ · ∥∞) + 2

λlow

)
+ 2∥F∥∞

λlow

√
2 log 2

δ

• β = 96I(F ,∥·∥∞)
λlow

+ 4∥F∥∞
λlow

√
2 log 4

δ
,

then with probability at least 1− δ, for all f ∈ F ,

R̂ρ(f) ≥ Rρ− α√
n
(f) ≥ Eξ∼P [f(ζ)]. (39)

Proof. Under Assumption 2.1, let λlow be given by Proposition E.2. Our goal is to ap-
ply Proposition E.3 in the standard WDRO case and to compute its constants thanks to
Lemma C.1. By Lemma C.1, we have the following constants:
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• Φ = 2∥F∥∞,

• Ψ = 2∥F∥∞
λlow

,

• λup =∞, and Lψ = ∥F∥∞ + λ−1
low.

α corresponds to B(δ) in Proposition E.3 and β corresponds 2C(δ)
λlow

, whence we obtain

• α = 48
(
∥F∥∞ + 1

λlow

)(
I(F , ∥ · ∥∞) + 2

λlow

)
+ 2∥F∥∞

λlow

√
2 log 2

δ

• β = 2
λlow

(
48I(F , ∥ · ∥∞) + 2∥F∥∞

√
2 log 4

δ

)
= 96I(F ,∥·∥∞)

λlow
+ 4∥F∥∞

λlow

√
2 log 4

δ
.

By strong duality, Proposition B.1, Rϱ(f) and R̂ϱ(f) admit the representations

Rϱ(f) = inf
λ∈[0,∞)

{λϱ+ Eξ∼P [ϕ(λ, f, ξ)]}

R̂ϱ(f) = inf
λ∈[0,∞)

{
λϱ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
,

for any ϱ > 0 and f ∈ F . By Proposition E.3, if α√
n
< ρ < ρcrit

2
− β√

n
, then with probability

at least 1− δ, we have for all f ∈ F , R̂ρ(f) ≥ Rρ− α√
n
(f), hence the result.

The next result corresponds to the generalization guarantee for WDRO with double
regularization, Theorem 3.2:

Theorem E.2 (Generalization guarantee, regularized WDRO). Under Assumption 2.1, there
exists λlow > 0 such that if

max

{
mc,

ατ,ϵ√
n

}
< ρ <

ρτ,ϵcrit

2
− βτ,ϵ√

n

where

• ατ,ϵ = 48
(
∥F∥∞ + 1

λτ,ϵlow
+ 2∥F∥∞mcϵ

ϵ(ρ−mc)+2τ∥F∥∞

)(
I(F , ∥ · ∥∞) + 2

λτ,ϵlow

)
+
(

2∥F∥∞
λτ,ϵlow

+mc

)√
2 log 2

δ

• βτ,ϵ = 96I(F ,∥·∥∞)
λτ,ϵlow

+ 4
(

∥F∥∞
λτ,ϵlow

+mc

)√
2 log 4

δ
,

then with probability at least 1− δ, for all f ∈ F ,

R̂τ,ϵ
ρ (f) ≥ Rτ,ϵ

ρ−ατ,ϵ
√
n

(f) ≥ Eζ∼Q[f(ζ)]− ϵKL(πP,Q∥π0)

whenever W τ
c (P,Q) ≤ ρ.

Proof. Under Assumption 2.1, let λτ,ϵlow > 0 be given by Proposition E.2, and assume ρ > mc.
As for standard WDRO, our goal is to apply Proposition E.3 and to compute its constants
thanks to Lemma C.3. By Lemma C.3, and taking λup = 2∥F∥∞

ρ−mc
, we have the following

constants:

34



• Φ = ∥F∥∞ − (−∥F∥∞ − 2λτ,ϵlowmc) = 2(∥F∥∞ + λτ,ϵlowmc)

• Ψ = 2∥F∥∞
λτ,ϵlow

+mc

• λup = 2∥F∥∞
ρ−mc

and Lψ = ∥F∥∞ + 1
λτ,ϵlow

+ 2∥F∥∞mcϵ
ϵ(ρ−mc)+2τ∥F∥∞ .

In Proposition E.3, ατ,ϵ corresponds to B(δ) and βτ,ϵ corresponds to 2C(δ)
λτ,ϵlow

. In this case,

we have:

• ατ,ϵ = 48
(
∥F∥∞ + 1

λτ,ϵlow
+ 2∥F∥∞mcϵ

ϵ(ρ−mc)+2τ∥F∥∞

)(
I(F , ∥ · ∥∞) + 2

λτ,ϵlow

)
+
(

2∥F∥∞
λτ,ϵlow

+mc

)√
2 log 2

δ

• βτ,ϵ = 2
λτ,ϵlow

(
48I(F , ∥ · ∥∞) + 2(∥F∥∞ + λτ,ϵlowmc)

√
2 log 4

δ

)
= 96I(F ,∥·∥∞)

λτ,ϵlow
+ 4

(
∥F∥∞
λτ,ϵlow

+mc

)√
2 log 4

δ
.

By strong duality, Proposition B.2, and by the dual upper-bound, Lemma D.3, Rτ,ϵ
ϱ (f)

and R̂τ,ϵ
ϱ (f) admit the representations

Rτ,ϵ
ϱ (f) = inf

λ∈[0,λup)
{λϱ+ Eξ∼P [ϕτ,ϵ(λ, f, ξ)]}

R̂τ,ϵ
ϱ (f) = inf

λ∈[0,λup)

{
λϱ+ Eξ∼P̂n

[ϕτ,ϵ(λ, f, ξ)]
}
,

for any ϱ > 0 and f ∈ F . Recall that ρ > mc. If furthermore ατ,ϵ
√
n
< ρ <

ρτ,ϵcrit

2
− βτ,ϵ

√
n
, then

with probability at least 1− δ, we have for all f ∈ F , R̂τ,ϵ
ρ (f) ≥ Rτ,ϵ

ρ− α√
n
(f) by Proposition E.3

hence we obtain the first inequality.
Now, toward the second inequality, let Q ∈ P(Ξ) such that W τ

c (P,Q) ≤ ρ. Let πP,Q ∈
P(Ξ × Ξ) satisfying [πP,Q]1 = P , [πP,Q]2 = Q and E(ξ,ζ)∼πP,Q [c(ξ, ζ)] + τ KL(πP,Q∥π0) =
W τ
c (P,Q). We finally obtain for all f ∈ F , Rρ− α√

n
(f) ≥ Eζ∼Q[f(ζ)]− ϵKL(πP,Q∥π0).

F Side remarks

This part contains results supporting various remarks made in the main text.

F.1 Interpretation of the critical radius in the regularized case.

The following result gives an interpretation of the critical radius ρτ,ϵcrit in regularized WDRO
appearing in Theorem 3.2. We show that when the radius ρ is larger than this value, then
some robust losses become degenerated. Precisely, they become independent of ρ and are
equal to a regularized version of the worst-case loss maxΞ f .

Proposition F.1. Assume ρ > ρτ,ϵcrit. Then there exists f ∈ F such that

Rτ,ϵ
ρ (f) = sup

π∈P(Ξ×Ξ)
[π]1=P

{
Eζ∼[π]2 [f(ζ)]− ϵKL(π∥π0)

}
.
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Proof. In the regularized case, we can verify that the critical radius has the expression

ρτ,ϵcrit = inf
f∈F

{
Eξ∼P

[
E
ζ∼πf/ϵ

0 (·|ξ)

[τ
ϵ
f(ζ) + c(ξ, ζ)

]
− τ logEζ∼π0(·|ξ)e

f(ζ)
ϵ

]}
, (40)

see for instance the proof of Lemma D.2. Let f ∈ F be arbitrary. Consider a coupling

π∗ ∈ P(Ξ× Ξ) such that [π∗]1 = P and π∗(·|ξ) = π
f
ϵ
0 (·|ξ) for almost all ξ ∈ Ξ. We first verify

that for a good choice of f , it is included in the uncertainty set defining Rτ,ϵ
ρ (f).

We compute KL(π∗∥π0). Below, we set Z(ξ) := Eζ∼π0(·|ξ)
[
e

f(ζ)
ϵ

]
.

KL(π∗∥π0) = Eξ∼P

[
E
ζ∼π

f
ϵ
0 (·|ξ)

[
log

(
e

f(ζ)
ϵ

Z(ξ)

)]]

= Eξ∼P
[
E
ζ∼π

f
ϵ
0 (·|ξ)

[
f(ζ)

ϵ

]
− logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]]
= E(ξ,ζ)∼π∗

[
f(ζ)

ϵ

]
− Eξ∼P

[
logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]]
. (41)

This leads to

E(ξ,ζ)∼π∗ [c(ξ, ζ)] + τ KL(π∗∥π0) = Eξ∼P
[
E
ζ∼πf/ϵ

0 (·|ξ)

[τ
ϵ
f(ζ) + c(ξ, ζ)

]
− τ logEζ∼π0(·|ξ)e

f(ζ)
ϵ

]
which is the term in the infimum (40). Since f was chosen arbitrary, this means that if
ρ > ρτ,ϵcrit, then there exists f ∈ F such that the coupling π∗ defined above (depending on f)
satisfies E(ξ,ζ)∼π∗ [c(ξ, ζ)] + τ KL(π∗∥π0) ≤ ρ, and we obtain

Rτ,ϵ
ρ (f) ≥ Eζ∼[π∗]2 [f(ζ)]− ϵKL(π∗∥π0).

On the other hand by the computation (41), we have

Rτ,ϵ
ρ (f) ≥ Eζ∼[π∗]2 [f(ζ)]− ϵKL(π∗∥π0) = ϵEξ∼P

[
logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]]
. (42)

By Donsker-Varadhan variational formula [16], for almost all ξ ∈ Ξ, we have

logEζ∼π0(·|ξ)
[
e

f(ζ)
ϵ

]
= sup

ν∈P(Ξ)

{Eζ∼ν [f(ζ)/ϵ]−KL(ν∥π0(·|ξ))} . (43)

Reinjecting (43) in (42) gives

Rτ,ϵ
ρ (f) ≥ ϵEξ∼P

[
sup

ν∈P(Ξ)

{Eζ∼ν [f(ζ)/ϵ]−KL(ν∥π0(·|ξ))}
]

≥ sup
π∈P(Ξ×Ξ)
[π]1=P

{
Eξ∼P

[
Eζ∼π(·|ξ)[f(ζ)]− ϵKL(π(·|ξ)∥π0(·|ξ))

]}
= sup

π∈P(Ξ×Ξ)
[π]1=P

{
Eζ∼[π]2 [f(ζ)]− ϵKL(π∥π0)

}
,

where we used the chain rule for KL divergence (see e.g. Theorem 2.15 in [29]): KL(π∥π0) =
Eξ∼P [KL(π(·|ξ)∥π0(·|ξ))] + KL([π]1∥[π0]1) ≥ Eξ∼P [KL(π(·|ξ)∥π0(·|ξ))]. Since we clearly have
Rτ,ϵ
ρ (f) ≤ sup

π∈P(Ξ×Ξ)
[π]1=P

{
Eζ∼[π]2 [f(ζ)]− ϵKL(π∥π0)

}
, this yields the result.
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F.2 Necessity of the dual upper-bound

We exhibit an example where the function µ 7→ ψτ,ϵ(µ, f, ξ) is not Lipschitz as µ→ 0. This
justifies the necessity of bounding the dual solution above in the regularized case, as done in
Lemma D.3.

Proposition F.2. Consider τ = 0, ϵ > 0, Ξ = [0, 1], c(ξ, ζ) = |ξ − ζ| and assume that the
reference distribution is a truncated Laplace π0(dζ|ξ) ∝ e−|ξ−ζ|1[0,1](ζ)dζ. Assume furthermore

F is a family of functions from [0, 1] to R which satisfies e−
2∥F∥∞

ϵ ≥ ϵ.
Then for almost all ξ ∈ [0, 1] and all f ∈ F , µ 7→ ψτ,ϵ(µ, f, ξ) is not Lipschitz at 0+.

Proof. Let ξ ∈ (0, 1) and f ∈ F . The expression of the derivative of ψ0,ϵ with respect to µ is
given by (23):

∂µψ
0,ϵ(µ, f, ξ) = E

ζ∼π
µf−c(ξ,·)

µϵ
0 (·|ξ)

[
ϵc(ξ, ζ)

µϵ

]
+ ϵ logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ

]
.

In particular, it satisfies

∂µψ
0,ϵ(µ, f, ξ) ≤ e

2∥F∥∞
ϵ E

ζ∼π
− c(ξ,·)

µϵ
0 (·|ξ)

[
c(ξ, ζ)

µ

]
+ ϵ logEζ∼π0(·|ξ)

[
e−

c(ξ,ζ)
µϵ

]
+ ∥F∥∞. (44)

On the other hand, by Donsker-Varadhan formula [16], we can write

logEζ∼π0(·|ξ)
[
e

−c(ξ,ζ)
µϵ

]
= E

ζ∼π
−c(ξ,ζ)

µϵ
0 (·|ξ)

[−c(ξ, ζ)
µϵ

]
−KL

(
π

−c(ξ,·)
µϵ

0 (·|ξ)
∥∥∥∥π0(·|ξ)) .

Reinjecting this in (44) and using e−
2∥F∥∞

ϵ ≥ ϵ gives

∂µψ
τ,ϵ(µ, f, ξ) ≤ ∥F∥∞ −KL

(
π
− c(ξ,·)

µϵ

0 (·|ξ)
∥∥∥∥π0(·|ξ)) .

Consequently, to prove non-Lipschitzness of ψ0,ϵ(·, f, ξ) at 0, we show that

KL

(
π
− c(ξ,·)

µϵ

0 (·|ξ)
∥∥∥∥π0(·|ξ))→∞

as µ→ 0. We show that π
− |ξ−·|

µϵ

0 (·|ξ) converges in law to δξ. Let φ : R→ R be of class C∞

with compact support. With the change of variable u← ξ−ζ
µϵ

, we have∫ 1

0

e−
|ξ−ζ|
µϵ φ(ζ)dζ = µϵ

∫
R
1[ ξ−1

µϵ
, ξ
µϵ ]

(u)e−|u|φ(ξ + µϵu)du.

Also, we easily verify that∫ 1

0

e−
|ξ−ζ|
µϵ dζ =

∫ ξ

0

e−
ξ−ζ
µϵ dζ +

∫ 1

ξ

e−
ζ−ξ
µϵ dζ = µϵ(2− e−

ξ
µϵ − e

−(1−ξ)
µϵ ),

hence we obtain

E
ζ∼π

−|ξ−·|
µϵ

0

[φ(ζ)] =

∫
R 1[ ξ−1

µϵ
, ξ
µϵ ]

(u)e−|u|φ(ξ + µϵu)du

2− e−
ξ
µϵ − e

−(1−ξ)
µϵ

. (45)

We then have the following:
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• 2− e−
ξ
µϵ − e

−(1−ξ)
µϵ converges to 2 as µ→ 0,

• For all u ∈ R, 1[ ξ−1
µϵ

, ξ
µϵ ]

(u)e−|u|φ(ξ + µϵu)du converges to e−|u|φ(ξ) as µ→ 0, hence its

integral with respect to u converges to 2φ(ξ) by dominated convergence theorem.

Combining both limits in (45) gives E
ζ∼π

−|ξ−·|
µϵ

0 (·|ξ)
[φ(ζ)] → φ(ξ). This means that

π
− |ξ−·|

µϵ

0 (·|ξ) converges in law to δξ. We have KL(δξ∥π0(·|ξ)) = ∞, hence by lower semi-
continuity of the KL-divergence for the convergence in law (or weak convergence), see

e.g. Theorem 4.9 from [29], we obtain KL

(
π
− c(ξ,·)

µϵ

0 (·|ξ)
∥∥∥∥π0(·|ξ)) −→µ→0

∞. This means that

ψ0,ϵ(·, f, ξ) is not Lipschitz near 0.

F.3 On the compactness condition, Assumption 5.1 from [5]

We justify the importance of relaxing Assumption 5.1 from [5] which corresponds to compact-
ness of F with respect to the distance DF(f, g) := ∥f − g∥∞ + dH(argmaxΞ f, argmaxΞ g).
We show that this condition is actually equivalent to assuming continuity on f 7→ argmax f ,
which is a strong condition and difficult to verify in practice.

Proposition F.3. For (f, g) ∈ F × F , define

DF(f, g) := ∥f − g∥∞ + dH(argmax
Ξ

f, argmax
Ξ

g)

where dH is the Hausdorff distance on the set of compact subsets of Ξ, K(Ξ) . Assume
(F , ∥ · ∥∞) is compact. Then we have the equivalence

(F , DF) is compact ⇐⇒ f 7→ argmax
Ξ

f is continuous from (F , ∥ · ∥∞) to (K(Ξ), dH).

Proof. We prove (⇒). Assume (F , DF) is compact. Let f ∈ F , and let (gk)k∈N be an
arbitrary sequence from F such that gk converges to f for ∥ · ∥∞. We want to show that
argmaxΞ gk converges to argmaxΞ f for dH , proving the continuity of the arg max map. By
compactness of (F , DF), (gk)k∈N admits accumulation points for DF . Let h be any one of
them. We may extract a subsequence from (gk)k∈N converging to h, say gnk

→
k→∞

h ∈ F . In
particular, gnk

converges to h for ∥ · ∥∞. We necessarily have h = f by definition of the
sequence (gk)k∈N. It means that (gk)k∈N admits only one possible accumulation point for DF ,
which is f . This implies gk converges to f for DF , hence argmaxΞ gk converges to argmaxΞ f .

Now, we prove (⇐). Let (fk)k∈N be a sequence from F . By compactness of (F , ∥ · ∥∞),
we may extract a converging subsequence fnk

→
k→∞

f for ∥ · ∥∞. Assuming f 7→ argmaxΞ f is

continuous gives that argmaxΞ fnk
converges to argmaxΞ f , which is the desired result.
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