
Nonsmooth calculus and optimization in machine
learning: first-order sampling and implicit differentiation

PhD defense

Tam Le

advised by Jérôme Bolte (TSE) and Edouard Pauwels (TSE),
joint work with Antonio Silveti-Falls (CentraleSupelec)

Nonsmooth optimization in machine learning

Many machine learning problems cast into an optimization problem.

Minimize
w∈Rp

F (w)

First-order methods, e.g. gradient method are really popular

wk+1 = wk − αk∇F (wk)

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)

• Can be adapted to handle massive training sets (Stochastic algorithms)
• Computational power (GPU)

Observation: In many practical situations, F is nonconvex and nonsmooth.

F

x

F (x)

2 / 37

Nonsmooth optimization in machine learning

Many machine learning problems cast into an optimization problem.

Minimize
w∈Rp

F (w)

First-order methods, e.g. gradient method are really popular

wk+1 = wk − αk∇F (wk)

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)

• Can be adapted to handle massive training sets (Stochastic algorithms)
• Computational power (GPU)

Observation: In many practical situations, F is nonconvex and nonsmooth.

F

x

F (x)

2 / 37

Nonsmooth optimization in machine learning

Many machine learning problems cast into an optimization problem.

Minimize
w∈Rp

F (w)

First-order methods, e.g. gradient method are really popular

wk+1 = wk − αk(∇F (wk) + ϵk)

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
• Can be adapted to handle massive training sets (Stochastic algorithms)

• Computational power (GPU)

Observation: In many practical situations, F is nonconvex and nonsmooth.

F

x

F (x)

2 / 37

Nonsmooth optimization in machine learning

Many machine learning problems cast into an optimization problem.

Minimize
w∈Rp

F (w)

First-order methods, e.g. gradient method are really popular

wk+1 = wk − αk(∇F (wk) + ϵk)

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
• Can be adapted to handle massive training sets (Stochastic algorithms)
• Computational power (GPU)

Observation: In many practical situations, F is nonconvex and nonsmooth.

F

x

F (x)

2 / 37

Nonsmooth optimization in machine learning

Many machine learning problems cast into an optimization problem.

Minimize
w∈Rp

F (w)

First-order methods, e.g. gradient method are really popular

wk+1 = wk − αk(∇F (wk) + ϵk)

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
• Can be adapted to handle massive training sets (Stochastic algorithms)
• Computational power (GPU)

Observation: In many practical situations, F is nonconvex and nonsmooth.

F

x

F (x)

2 / 37

Example 1: neural networks

Supervised learning.

Minimize
w∈Rp

E(x,y)∼P [d(h(w, x), y)]

prediction task h(w, x) ≈ y

Neural networks. In deep learning, predictions are built upon multiple
compositions.

h(w, x) = σL(ALσL−1(AL−1 . . . σ2(A2σ1(A1x+ b1) + b2) + bL−1 . . .) + bL)

w = (A1, A2 . . . AL, b1, . . . , bL).

many applications: image classification, speech recognition, language prediction...

3 / 37

Example 1: neural networks

Supervised learning.

Minimize
w∈Rp

E(x,y)∼P [d(h(w, x), y)]

prediction task h(w, x) ≈ y

Neural networks. In deep learning, predictions are built upon multiple
compositions.

h(w, x) = σL(ALσL−1(AL−1 . . . σ2(A2σ1(A1x+ b1) + b2) + bL−1 . . .) + bL)

w = (A1, A2 . . . AL, b1, . . . , bL).

many applications: image classification, speech recognition, language prediction...

3 / 37

Example 1: neural networks

Supervised learning.

Minimize
w∈Rp

E(x,y)∼P [d(h(w, x), y)]

prediction task h(w, x) ≈ y

Neural networks. In deep learning, predictions are built upon multiple
compositions.

h(w, x) = σL(ALσL−1(AL−1 . . . σ2(A2σ1(A1x+ b1) + b2) + bL−1 . . .) + bL)

w = (A1, A2 . . . AL, b1, . . . , bL).

many applications: image classification, speech recognition, language prediction...

3 / 37

Example 1: neural networks

The σi are nonlinear and often nonsmooth functions:
ReLU function

reLU(x) =

{
x if x > 0
0 if x ≤ 0

nonsmooth at 0.

MaxPooling

MaxPooling

3 1 13 8
7 20 6 2
7 3 5 4
6 2 1 5

 =

[
20 13
7 5

]
.

max function is nonsmooth when components are equal.

4 / 37

Example 2: Bi-level optimization

Minimize
w∈Rp

F (w, z) s.t. z ∈ argmin
θ∈C

g(w, θ).

Studied beforehand in economics game theory (Stackelberg, 1952), optimization (Bracken and

McGill (1973), Dempe, Ye...).

Renewed interest in machine learning:

• Optimization layers, Amos & Kolter 2017.

z ∈ argminθ∈C g(w, x, θ)
x z

• Hyperparameter optimization: Bengio 2000; Do et al. 2007; Bertrand et al. 2020

Example of the lasso:

Minimize
λ

Criterion(β(λ))

s.t. β(λ) ∈ argmin
β∈Rp

∥Xβ − Y ∥2 + λ∥β∥1.

5 / 37

Example 2: Bi-level optimization

Minimize
w∈Rp

F (w, z) s.t. z ∈ argmin
θ∈C

g(w, θ).

Studied beforehand in economics game theory (Stackelberg, 1952), optimization (Bracken and

McGill (1973), Dempe, Ye...).

Renewed interest in machine learning:

• Optimization layers, Amos & Kolter 2017.

z ∈ argminθ∈C g(w, x, θ)
x z

• Hyperparameter optimization: Bengio 2000; Do et al. 2007; Bertrand et al. 2020

Example of the lasso:

Minimize
λ

Criterion(β(λ))

s.t. β(λ) ∈ argmin
β∈Rp

∥Xβ − Y ∥2 + λ∥β∥1.

5 / 37

Solution paths are often nonsmooth

LASSO path β(·) is piecewise linear.

6 / 37

Outline

Observation: a gap between the classical theory in nonsmooth opt. vs practice in
ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.
- The classical theory for nonsmooth functions (Clarke subgradient) doesn’t
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called Conservative derivatives, which
justifies automatic differentiation.

We propose two extensions

• Differentiation under nonsmooth expectation → stochastic methods.

• Nonsmooth Implicit differentiation → gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using ODE approaches, we show the convergence of nonsmooth stochastic
optimization algorithms as implemented in practice.

7 / 37

Outline

Observation: a gap between the classical theory in nonsmooth opt. vs practice in
ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.
- The classical theory for nonsmooth functions (Clarke subgradient) doesn’t
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called Conservative derivatives, which
justifies automatic differentiation.

We propose two extensions

• Differentiation under nonsmooth expectation → stochastic methods.

• Nonsmooth Implicit differentiation → gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using ODE approaches, we show the convergence of nonsmooth stochastic
optimization algorithms as implemented in practice.

7 / 37

Outline

Observation: a gap between the classical theory in nonsmooth opt. vs practice in
ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.
- The classical theory for nonsmooth functions (Clarke subgradient) doesn’t
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called Conservative derivatives, which
justifies automatic differentiation.

We propose two extensions

• Differentiation under nonsmooth expectation → stochastic methods.

• Nonsmooth Implicit differentiation → gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using ODE approaches, we show the convergence of nonsmooth stochastic
optimization algorithms as implemented in practice.

7 / 37

Outline

1 Nonsmooth optimization: classical theory and practice in ML

2 Nonsmooth calculus with Conservative derivatives

3 Analysis of nonsmooth first-order algorithms

8 / 37

1 Nonsmooth optimization: classical theory and practice in ML

2 Nonsmooth calculus with Conservative derivatives

3 Analysis of nonsmooth first-order algorithms

9 / 37

A glance at the differentiable setting

Gradient method

wk+1 = wk − αk∇F (wk).

• −∇F generates descent trajectories, F decreases along the gradient curves

ẇ = −∇F (w).

→ Gradient method as ODE discretization.

• ∇F can be computed by calculus rules: ∇(f + g) = ∇f +∇g,
Jac(u ◦ v) = (Jacu ◦ v) Jac v . . .

What if F is nonsmooth?

10 / 37

The Clarke subgradient: gradient for nonsmooth functions

Let F : Rn → R locally Lipschitz, differentiable on diffF of full Lebesgue measure.

Clarke subgradient ∂c

∂cF (x) = conv

{
lim

k→+∞
∇F (xk) : xk ∈ diffF , xk −→

k→+∞
x

}
(extends to Jacobians)

F

x

F (x)

x1 x2

∂c
F (x1)

∂c
F (x2)

∂cF is graph-closed, locally bounded, convex-valued.
→ existence of the continuous dynamic ẋ ∈ −∂cF (x).
→ subgradient method wk+1 ∈ wk − αk∂

cF (wk) as ODE discretization.

11 / 37

The Clarke subgradient: gradient for nonsmooth functions

Let F : Rn → R locally Lipschitz, differentiable on diffF of full Lebesgue measure.

Clarke subgradient ∂c

∂cF (x) = conv

{
lim

k→+∞
∇F (xk) : xk ∈ diffF , xk −→

k→+∞
x

}
(extends to Jacobians)

F

x

F (x)

x1 x2

∂c
F (x1)

∂c
F (x2)

∂cF is graph-closed, locally bounded, convex-valued.
→ existence of the continuous dynamic ẋ ∈ −∂cF (x).
→ subgradient method wk+1 ∈ wk − αk∂

cF (wk) as ODE discretization.
11 / 37

Path-differentiable functions

Do we have descent along γ̇ ∈ −∂cF (γ)?

Not in general. There exist Lipschitz functions F such that ∂cF = B(0, 1)
everywhere.

Path differentiability, Valadier 1989

Let F locally Lipschitz. F is called path-differentiable if for all absolutely
continuous curve γ : [0, 1] → Rp, for almost all t ∈ [0, 1]

d

dt
(F ◦ γ)(t) = ⟨v, γ̇(t)⟩, ∀v ∈ ∂cF (γ(t)).

→ enforces descent along the curves γ̇ ∈ −∂cF (γ):

12 / 37

Path-differentiable functions

Do we have descent along γ̇ ∈ −∂cF (γ)?

Not in general. There exist Lipschitz functions F such that ∂cF = B(0, 1)
everywhere.

Path differentiability, Valadier 1989

Let F locally Lipschitz. F is called path-differentiable if for all absolutely
continuous curve γ : [0, 1] → Rp, for almost all t ∈ [0, 1]

d

dt
(F ◦ γ)(t) = ⟨v, γ̇(t)⟩, ∀v ∈ ∂cF (γ(t)).

→ enforces descent along the curves γ̇ ∈ −∂cF (γ):

12 / 37

Path-differentiable functions

How “generic” is the class of path-differentiable functions?

→ Path differentiable functions are ubiquitous in practice.

• Convex functions (Brézis, 1973)

• Semialgebraic (∼ piecewise
polynomial), definable functions,
(Davis et al., 2019).

• Definable functions: functions
written as compositions involving
elementary functions
(if, else,+, ·,×, exp, log)

13 / 37

Path-differentiable functions

How “generic” is the class of path-differentiable functions?

→ Path differentiable functions are ubiquitous in practice.

• Convex functions (Brézis, 1973)

• Semialgebraic (∼ piecewise
polynomial), definable functions,
(Davis et al., 2019).

• Definable functions: functions
written as compositions involving
elementary functions
(if, else,+, ·,×, exp, log)

13 / 37

Path-differentiable functions

How “generic” is the class of path-differentiable functions?

→ Path differentiable functions are ubiquitous in practice.

• Convex functions (Brézis, 1973)

• Semialgebraic (∼ piecewise
polynomial), definable functions,
(Davis et al., 2019).

• Definable functions: functions
written as compositions involving
elementary functions
(if, else,+, ·,×, exp, log)

13 / 37

Path-differentiable functions

How “generic” is the class of path-differentiable functions?

→ Path differentiable functions are ubiquitous in practice.

• Convex functions (Brézis, 1973)

• Semialgebraic (∼ piecewise
polynomial), definable functions,
(Davis et al., 2019).

• Definable functions: functions
written as compositions involving
elementary functions
(if, else,+, ·,×, exp, log)

Projection formula, Bolte et al. 2007

13 / 37

Concerns

• The Clarke subgradient provides descent for path-differentiable functions.

→ Can we easily compute elements of the Clarke subgradient? Does
automatic differentiation output Clarke subgradients?

• Definable functions: functions implemented in practice are path-differentiable.

→ What can we say about expectation minimization
F (w) = Eξ∼P [f(w, ξ)]?

14 / 37

Concerns

• The Clarke subgradient provides descent for path-differentiable functions.

→ Can we easily compute elements of the Clarke subgradient? Does
automatic differentiation output Clarke subgradients?

• Definable functions: functions implemented in practice are path-differentiable.

→ What can we say about expectation minimization
F (w) = Eξ∼P [f(w, ξ)]?

14 / 37

Concerns

• The Clarke subgradient provides descent for path-differentiable functions.

→ Can we easily compute elements of the Clarke subgradient? Does
automatic differentiation output Clarke subgradients?

• Definable functions: functions implemented in practice are path-differentiable.

→ What can we say about expectation minimization
F (w) = Eξ∼P [f(w, ξ)]?

14 / 37

Concerns

• The Clarke subgradient provides descent for path-differentiable functions.

→ Can we easily compute elements of the Clarke subgradient? Does
automatic differentiation output Clarke subgradients?

• Definable functions: functions implemented in practice are path-differentiable.

→ What can we say about expectation minimization
F (w) = Eξ∼P [f(w, ξ)]?

14 / 37

What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

relu(x) =

{
x, if x > 0

0, else.
−→

autodiff
relu′(x) =

{
1, if x > 0

0, else.

How about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule on Clarke derivatives.

f(w) = gr ◦ gr−1 ◦ . . . ◦ g1(w)

autodiffw f(w) ∈ ∂cgr(gr−1 ◦ . . . ◦ g1(w))T

× Jacc gr−1(gr−2 ◦ . . . ◦ g1(w))× . . .× Jaccw g1(w).

But do calculus rules apply to Clarke derivatives?

No.

• (Sum rule) ∂c(f + g) ⊊ ∂cf + ∂cg.

• (Composition rule) Jacc(F ◦G) ⊊ conv Jacc F (G) JaccG,

15 / 37

What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

relu(x) =

{
x, if x > 0

0, else.
−→

autodiff
relu′(x) =

{
1, if x > 0

0, else.

How about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule on Clarke derivatives.

f(w) = gr ◦ gr−1 ◦ . . . ◦ g1(w)

autodiffw f(w) ∈ ∂cgr(gr−1 ◦ . . . ◦ g1(w))T

× Jacc gr−1(gr−2 ◦ . . . ◦ g1(w))× . . .× Jaccw g1(w).

But do calculus rules apply to Clarke derivatives?

No.

• (Sum rule) ∂c(f + g) ⊊ ∂cf + ∂cg.

• (Composition rule) Jacc(F ◦G) ⊊ conv Jacc F (G) JaccG,

15 / 37

What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

relu(x) =

{
x, if x > 0

0, else.
−→

autodiff
relu′(x) =

{
1, if x > 0

0, else.

How about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule on Clarke derivatives.

f(w) = gr ◦ gr−1 ◦ . . . ◦ g1(w)

autodiffw f(w) ∈ ∂cgr(gr−1 ◦ . . . ◦ g1(w))T

× Jacc gr−1(gr−2 ◦ . . . ◦ g1(w))× . . .× Jaccw g1(w).

But do calculus rules apply to Clarke derivatives?

No.

• (Sum rule) ∂c(f + g) ⊊ ∂cf + ∂cg.

• (Composition rule) Jacc(F ◦G) ⊊ conv Jacc F (G) JaccG,

15 / 37

What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

relu(x) =

{
x, if x > 0

0, else.
−→

autodiff
relu′(x) =

{
1, if x > 0

0, else.

How about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule on Clarke derivatives.

f(w) = gr ◦ gr−1 ◦ . . . ◦ g1(w)

autodiffw f(w) ∈ ∂cgr(gr−1 ◦ . . . ◦ g1(w))T

× Jacc gr−1(gr−2 ◦ . . . ◦ g1(w))× . . .× Jaccw g1(w).

But do calculus rules apply to Clarke derivatives?

No.

• (Sum rule) ∂c(f + g) ⊊ ∂cf + ∂cg.

• (Composition rule) Jacc(F ◦G) ⊊ conv Jacc F (G) JaccG,
15 / 37

Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F = Eξ∼P [f(·, ξ)] we may
sample ∇wf(·, ξ), ξ ∼ P to have a noisy estimate of

Eξ∼P [∇wf(·, ξ)] = ∇F (Differentiation under integral)

→ Practice: f is nonsmooth, autodiffw f(w, ξ) is sampled instead of ∇wf(w, ξ).

Example 2. Implicit differentiation. H(x, y) = 0, H continuously
differentiable. How to differentiate y w.r.t. x?

∂y

∂x
= −

[
∂H

∂y

]−1
∂H

∂x
(Implicit differentiation)

→ Practice: H nonsmooth (e.g. optimality conditions). ∂H is replaced by
autodiffH.

16 / 37

Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F = Eξ∼P [f(·, ξ)] we may
sample ∇wf(·, ξ), ξ ∼ P to have a noisy estimate of

Eξ∼P [∇wf(·, ξ)] = ∇F (Differentiation under integral)

→ Practice: f is nonsmooth, autodiffw f(w, ξ) is sampled instead of ∇wf(w, ξ).

Example 2. Implicit differentiation. H(x, y) = 0, H continuously
differentiable. How to differentiate y w.r.t. x?

∂y

∂x
= −

[
∂H

∂y

]−1
∂H

∂x
(Implicit differentiation)

→ Practice: H nonsmooth (e.g. optimality conditions). ∂H is replaced by
autodiffH.

16 / 37

Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F = Eξ∼P [f(·, ξ)] we may
sample ∇wf(·, ξ), ξ ∼ P to have a noisy estimate of

Eξ∼P [∇wf(·, ξ)] = ∇F (Differentiation under integral)

→ Practice: f is nonsmooth, autodiffw f(w, ξ) is sampled instead of ∇wf(w, ξ).

Example 2. Implicit differentiation. H(x, y) = 0, H continuously
differentiable. How to differentiate y w.r.t. x?

∂y

∂x
= −

[
∂H

∂y

]−1
∂H

∂x
(Implicit differentiation)

→ Practice: H nonsmooth (e.g. optimality conditions). ∂H is replaced by
autodiffH.

16 / 37

1 Nonsmooth optimization: classical theory and practice in ML

2 Nonsmooth calculus with Conservative derivatives

3 Analysis of nonsmooth first-order algorithms

17 / 37

Conservative gradients, Bolte & Pauwels (2021)

Let F : Rn → R locally Lipschitz, and a set-valued map D : Rn ⇒ Rn,
D is a conservative gradient for F if

- It generates descent trajectories

For all absolutely continuous curve
γ : [0, 1] → Rn,

d

dt
(F ◦γ)(t) = ⟨v, γ̇(t)⟩, ∀v ∈ D(γ(t)),

for almost all t ∈ [0, 1].
(extends to Jacobians)

F decreases along γ̇ ∈ −D(γ)

- Existence of the flow γ̇ ∈ −D(γ):

D is graph-closed, nonempty (convex) valued, locally bounded.

18 / 37

Conservative gradients, Bolte & Pauwels (2021)

Let F : Rn → R locally Lipschitz, and a set-valued map D : Rn ⇒ Rn,
D is a conservative gradient for F if

- It generates descent trajectories

For all absolutely continuous curve
γ : [0, 1] → Rn,

d

dt
(F ◦γ)(t) = ⟨v, γ̇(t)⟩, ∀v ∈ D(γ(t)),

for almost all t ∈ [0, 1].
(extends to Jacobians)

F decreases along γ̇ ∈ −D(γ)

- Existence of the flow γ̇ ∈ −D(γ):

D is graph-closed, nonempty (convex) valued, locally bounded.

18 / 37

Conservative gradients, Bolte & Pauwels (2021)

Let F : Rn → R locally Lipschitz, and a set-valued map D : Rn ⇒ Rn,
D is a conservative gradient for F if

- It generates descent trajectories

For all absolutely continuous curve
γ : [0, 1] → Rn,

d

dt
(F ◦γ)(t) = ⟨v, γ̇(t)⟩, ∀v ∈ D(γ(t)),

for almost all t ∈ [0, 1].
(extends to Jacobians)

F decreases along γ̇ ∈ −D(γ)

- Existence of the flow γ̇ ∈ −D(γ):

D is graph-closed, nonempty (convex) valued, locally bounded.

18 / 37

Conservative calculus

- ∂cF is the minimal conservative gradient: if ∃DF conservative, then F is path
differentiable.

- Sum rule Let Df , Dg be conservative gradients for f and g, Df +Dg is
conservative gradient for f + g.
- Chain rule Let Ju, Jv be conservative Jacobians for u and v. Ju(v)Jv is
conservative Jacobian for u ◦ v. → automatic differentiation outputs conservative
Jacobians.

Two extensions to conservative calculus.

1. Implicit differentiation. Given

F (x, y) = 0

where F is nonsmooth, how to “differentiate” y with respect to x?
→ differentiating solutions path.

2. Integral rule. “differentiating” under integral/expectation F = Eξ∼P [f(·, ξ)]
→ nonsmooth stochastic methods.

19 / 37

Conservative calculus

- ∂cF is the minimal conservative gradient: if ∃DF conservative, then F is path
differentiable.

- Sum rule Let Df , Dg be conservative gradients for f and g, Df +Dg is
conservative gradient for f + g.
- Chain rule Let Ju, Jv be conservative Jacobians for u and v. Ju(v)Jv is
conservative Jacobian for u ◦ v. → automatic differentiation outputs conservative
Jacobians.

Two extensions to conservative calculus.

1. Implicit differentiation. Given

F (x, y) = 0

where F is nonsmooth, how to “differentiate” y with respect to x?
→ differentiating solutions path.

2. Integral rule. “differentiating” under integral/expectation F = Eξ∼P [f(·, ξ)]
→ nonsmooth stochastic methods.

19 / 37

Conservative calculus

- ∂cF is the minimal conservative gradient: if ∃DF conservative, then F is path
differentiable.

- Sum rule Let Df , Dg be conservative gradients for f and g, Df +Dg is
conservative gradient for f + g.
- Chain rule Let Ju, Jv be conservative Jacobians for u and v. Ju(v)Jv is
conservative Jacobian for u ◦ v. → automatic differentiation outputs conservative
Jacobians.

Two extensions to conservative calculus.

1. Implicit differentiation. Given

F (x, y) = 0

where F is nonsmooth, how to “differentiate” y with respect to x?
→ differentiating solutions path.

2. Integral rule. “differentiating” under integral/expectation F = Eξ∼P [f(·, ξ)]
→ nonsmooth stochastic methods.

19 / 37

Conservative calculus

- ∂cF is the minimal conservative gradient: if ∃DF conservative, then F is path
differentiable.

- Sum rule Let Df , Dg be conservative gradients for f and g, Df +Dg is
conservative gradient for f + g.
- Chain rule Let Ju, Jv be conservative Jacobians for u and v. Ju(v)Jv is
conservative Jacobian for u ◦ v. → automatic differentiation outputs conservative
Jacobians.

Two extensions to conservative calculus.

1. Implicit differentiation. Given

F (x, y) = 0

where F is nonsmooth, how to “differentiate” y with respect to x?
→ differentiating solutions path.

2. Integral rule. “differentiating” under integral/expectation F = Eξ∼P [f(·, ξ)]
→ nonsmooth stochastic methods.

19 / 37

1. The Implicit Function Theorem (Cauchy)

F (x, y) = x2 + y2 − 1 y

x

F (x, y) = 0

Existence and regularity.
Let F : Rn × Rm → Rm continuously
differentiable and (x̂, ŷ) such that

F (x̂, ŷ) = 0

Then there exists a neighborhood U
containing x̂, and a unique continuously
differentiable function G : U → Rm,
verifying for all x ∈ U

F (x,G(x)) = 0.

20 / 37

1. The Implicit Function Theorem (Cauchy)

Existence and regularity.

Let F : Rn × Rm → Rm continuously
differentiable and (x̂, ŷ) such that

F (x̂, ŷ) = 0

Then there exists a neighborhood U
containing x̂, and a unique continuously
differentiable function G : U → Rm,
verifying for all x ∈ U

F (x,G(x)) = 0.

y

x

F (x, y) = 0

20 / 37

1. The Implicit Function Theorem (Cauchy)

Existence and regularity.
Let F : Rn × Rm → Rm continuously
differentiable and (x̂, ŷ) such that

F (x̂, ŷ) = 0

Then there exists a neighborhood U
containing x̂, and a unique continuously
differentiable function G : U → Rm,
verifying for all x ∈ U

F (x,G(x)) = 0.

y

x

F (x, y) = 0
(x̂, ŷ)

20 / 37

1. The Implicit Function Theorem (Cauchy)

Existence and regularity.
Let F : Rn × Rm → Rm continuously
differentiable and (x̂, ŷ) such that

F (x̂, ŷ) = 0

and ∂F
∂y (x̂, ŷ) is invertible

Then there exists a neighborhood U
containing x̂, and a unique continuously
differentiable function G : U → Rm,
verifying for all x ∈ U

F (x,G(x)) = 0.

y

x

F (x, y) = 0
(x̂, ŷ)

20 / 37

1. The Implicit Function Theorem (Cauchy)

Existence and regularity.
Let F : Rn × Rm → Rm continuously
differentiable and (x̂, ŷ) such that

F (x̂, ŷ) = 0

and ∂F
∂y (x̂, ŷ) is invertible

Then there exists a neighborhood U
containing x̂, and a unique continuously
differentiable function G : U → Rm,
verifying for all x ∈ U

F (x,G(x)) = 0.

y

x

F (x, y) = 0

U

G(x)

(x̂, ŷ)

20 / 37

1. The (smooth) Implicit Differentiation formula

F (x̂, G(x̂)) = 0.

Differentiating the equality on U leads to the implicit differentiation formula

∂G

∂x
(x̂) = −

[
∂F

∂y
(x̂, ŷ)

]−1
∂F

∂x
(x̂, ŷ).

21 / 37

1. The (smooth) Implicit Differentiation formula

F (x̂, G(x̂)) = 0.

Differentiating the equality on U leads to the implicit differentiation formula

∂G

∂x
(x̂) = −

[
∂F

∂y
(x̂, ŷ)

]−1
∂F

∂x
(x̂, ŷ).

21 / 37

1. Nonsmooth Implicit Function Theorem (Clarke, 1976)

Existence and regularity.
Let F : Rn × Rm → Rm be locally
Lipschitz

If, ∀[A B] ∈ Jacc F (x̂, ŷ) with
A ∈ Rm×n, B ∈ Rm×m , B is invertible,
then ∃U ⊂ Rn a neighborhood of x̂ and
a locally Lipschitz function G(x) so that

F (x,G(x)) = 0 ∀x ∈ U,

and y = G(x) is the unique such solution
in a neighborhood of ŷ.

y

x

F (x, y) = 0

22 / 37

1. Nonsmooth Implicit Function Theorem (Clarke, 1976)

Existence and regularity.
Let F : Rn × Rm → Rm be locally
Lipschitz and (x̂, ŷ) ∈ Rn × Rm such
that

F (x̂, ŷ) = 0.

If, ∀[A B] ∈ Jacc F (x̂, ŷ) with
A ∈ Rm×n, B ∈ Rm×m , B is invertible,

then ∃U ⊂ Rn a neighborhood of x̂ and
a locally Lipschitz function G(x) so that

F (x,G(x)) = 0 ∀x ∈ U,

and y = G(x) is the unique such solution
in a neighborhood of ŷ.

y

x

F (x, y) = 0
(x̂, ŷ)

22 / 37

1. Nonsmooth Implicit Function Theorem (Clarke, 1976)

Existence and regularity.
Let F : Rn × Rm → Rm be locally
Lipschitz and (x̂, ŷ) ∈ Rn × Rm such
that

F (x̂, ŷ) = 0.

If, ∀[A B] ∈ Jacc F (x̂, ŷ) with
A ∈ Rm×n, B ∈ Rm×m , B is invertible,
then ∃U ⊂ Rn a neighborhood of x̂ and
a locally Lipschitz function G(x) so that

F (x,G(x)) = 0 ∀x ∈ U,

and y = G(x) is the unique such solution
in a neighborhood of ŷ.

y

xU

F (x, y) = 0

G(x)

(x̂, ŷ)

22 / 37

1. Nonsmooth Implicit Function Theorem (Clarke, 1976)

Existence and regularity.
Let F : Rn × Rm → Rm be locally
Lipschitz and (x̂, ŷ) ∈ Rn × Rm such
that

F (x̂, ŷ) = 0.

If, ∀[A B] ∈ Jacc F (x̂, ŷ) with
A ∈ Rm×n, B ∈ Rm×m , B is invertible,
then ∃U ⊂ Rn a neighborhood of x̂ and
a locally Lipschitz function G(x) so that

F (x,G(x)) = 0 ∀x ∈ U,

and y = G(x) is the unique such solution
in a neighborhood of ŷ.

y

xU

F (x, y) = 0

G(x)

(x̂, ŷ)

22 / 37

1. Nonsmooth implicit differentiation

Nonsmooth implicit differentiation, Bolte, L., Pauwels, Silveti-Falls (2021)

Assume inplace that F is path-differentiable (semi-alg.). Then G is
path-differentiable and

JG(x) = {−B−1A | [A B] ∈ Jacc F (x,G(x))}

is a conservative Jacobian for G.

23 / 37

Illustrative example: lasso hyperparameter optimization

Lasso hyperparameter tuning

Minimize
λ

C(β(λ))

s.t. β(λ) ∈ argmin
β∈Rp

∥Xβ − Y ∥2 + eλ∥β∥1.

Let’s apply nonsmooth implicit differentiation to β(λ):
1. Implicit relation between β and λ = optimality condition:

F (β, λ) = β − proxeλ∥·∥1
(β − eλXT (Xβ − Y)) = 0

2. Uniqueness/invertibility assumption: (Osborne et al. 2000; Mairal, Yu 2012)

Define the equicorrelation set E := {j ∈ {1, . . . , p} : |XT
j (y −Xβ̂(λ))| = eλ}

and assume XT
E XE has full rank

Then: nonsmooth implicit differentiation applies to F .

24 / 37

Illustrative example: lasso hyperparameter optimization

Lasso hyperparameter tuning

Minimize
λ

C(β(λ))

s.t. β(λ) ∈ argmin
β∈Rp

∥Xβ − Y ∥2 + eλ∥β∥1.

Let’s apply nonsmooth implicit differentiation to β(λ):
1. Implicit relation between β and λ = optimality condition:

F (β, λ) = β − proxeλ∥·∥1
(β − eλXT (Xβ − Y)) = 0

2. Uniqueness/invertibility assumption: (Osborne et al. 2000; Mairal, Yu 2012)

Define the equicorrelation set E := {j ∈ {1, . . . , p} : |XT
j (y −Xβ̂(λ))| = eλ}

and assume XT
E XE has full rank

Then: nonsmooth implicit differentiation applies to F .

24 / 37

Invertibility condition is essential to satisfy: otherwise it can give really
pathological training dynamics!

Other applications

• Differentiating through cone programs

• Implicit layers, Deep equilibrium networks

z = σ(Wz+ b+ Ux)

25 / 37

2. Integral rule

Stochastic minimization
Consider

F (w) := Eξ∼P [f(·, ξ)]

Under mild conditions, one can differentiate under E:

∇F = Eξ∼P [∇wf(·, ξ)]

First-order sampling: Sample ξ ∼ P , ∇wf(w, ξ) ≈ ∇F (w)
→ Stochastic gradient method: wk+1 = wk − αk∇wf(wk, ξk)

In practice, f(·, ξ) is nonsmooth, and

∂cF ⊊ Eξ∼P [∂
c
wf(·, ξ)]

But we have access to a conservative gradient of f(·, ξ), D(·, ξ), e.g., autodiff.

Question: What is the expectation Eξ∼P [D(·, ξ)]?

26 / 37

2. Integral rule

Stochastic minimization
Consider

F (w) := Eξ∼P [f(·, ξ)]

Under mild conditions, one can differentiate under E:

∇F = Eξ∼P [∇wf(·, ξ)]

First-order sampling: Sample ξ ∼ P , ∇wf(w, ξ) ≈ ∇F (w)
→ Stochastic gradient method: wk+1 = wk − αk∇wf(wk, ξk)

In practice, f(·, ξ) is nonsmooth, and

∂cF ⊊ Eξ∼P [∂
c
wf(·, ξ)]

But we have access to a conservative gradient of f(·, ξ), D(·, ξ), e.g., autodiff.

Question: What is the expectation Eξ∼P [D(·, ξ)]?

26 / 37

2. Nonsmooth Integral rule

Theorem (Bolte, L., Pauwels 2022)

If D(·, ξ) is conservative gradient for f(·, ξ), then Eξ∼P [D(·, ξ)] is a conservative
gradient for F .

Assumptions:
1. (Measurability assumptions) . . .
2. (Boundedness assumption) For all compact subset C ⊂ Rp, there exists an integrable function
κ : S −→ R+ such that for all

(x, s) ∈ C × S, ∥D(x, s)∥ ≤ κ(s)

where for (x, s) ∈ Rp × S, ∥D(x, s)∥ := sup
y∈D(x,s)

∥y∥.

Main outcomes:

• Justifies first-order sampling in practical implementations: e.g. autodiff or
implicit differentiation.

• F is path-differentiable, under simple assumptions.

27 / 37

2. Nonsmooth Integral rule

Theorem (Bolte, L., Pauwels 2022)

If D(·, ξ) is conservative gradient for f(·, ξ), then Eξ∼P [D(·, ξ)] is a conservative
gradient for F .

Assumptions:
1. (Measurability assumptions) . . .
2. (Boundedness assumption) For all compact subset C ⊂ Rp, there exists an integrable function
κ : S −→ R+ such that for all

(x, s) ∈ C × S, ∥D(x, s)∥ ≤ κ(s)

where for (x, s) ∈ Rp × S, ∥D(x, s)∥ := sup
y∈D(x,s)

∥y∥.

Main outcomes:

• Justifies first-order sampling in practical implementations: e.g. autodiff or
implicit differentiation.

• F is path-differentiable, under simple assumptions.

27 / 37

1 Nonsmooth optimization: classical theory and practice in ML

2 Nonsmooth calculus with Conservative derivatives

3 Analysis of nonsmooth first-order algorithms

28 / 37

Nonsmooth Stochastic Gradient method in practical
implementations

We consider the problem

Minimize
w∈Rp

F (w) := Eξ∼P [f(w, ξ)],

We study a nonsmooth stochastic gradient method

wk+1 ∈ wk − αkD(wk, ξk). (1)

For ξ ∈ Rm, D(·, ξ) is a conservative gradient for f(·, ξ) → encompasses practical
calculus: autodiff, implicit differentiation in the nonsmooth setting

Integral rule: (1) writes

wk+1 ∈ wk − αk(DF (wk) + ϵk),

where DF = Eξ∼P [D(·, ξ)] is conservative gradient for F , ϵk has zero conditional
mean w.r.t. wk.

29 / 37

Nonsmooth Stochastic Gradient method in practical
implementations

We consider the problem

Minimize
w∈Rp

F (w) := Eξ∼P [f(w, ξ)],

We study a nonsmooth stochastic gradient method

wk+1 ∈ wk − αkD(wk, ξk). (1)

For ξ ∈ Rm, D(·, ξ) is a conservative gradient for f(·, ξ) → encompasses practical
calculus: autodiff, implicit differentiation in the nonsmooth setting

Integral rule: (1) writes

wk+1 ∈ wk − αk(DF (wk) + ϵk),

where DF = Eξ∼P [D(·, ξ)] is conservative gradient for F , ϵk has zero conditional
mean w.r.t. wk.

29 / 37

The ODE approach

Studying algorithms as ODE discretizations:

wk+1 − wk

αk
= −DF (wk) + ϵk ⇝ γ̇ ∈ −DF (γ) (2)

Interpolated process w:

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

w : R+ → Rp is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim
t→∞

inf
γ solution

sup
s∈[0,T]

∥w(t+ s)− γ(s)∥ = 0.

30 / 37

The ODE approach

Studying algorithms as ODE discretizations:

wk+1 − wk

αk
= −DF (wk) + ϵk ⇝ γ̇ ∈ −DF (γ) (2)

Interpolated process w:

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

w : R+ → Rp is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim
t→∞

inf
γ solution

sup
s∈[0,T]

∥w(t+ s)− γ(s)∥ = 0.

30 / 37

The ODE approach

Studying algorithms as ODE discretizations:

wk+1 − wk

αk
= −DF (wk) + ϵk ⇝ γ̇ ∈ −DF (γ) (2)

Interpolated process w:

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

w : R+ → Rp is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim
t→∞

inf
γ solution

sup
s∈[0,T]

∥w(t+ s)− γ(s)∥ = 0.

30 / 37

Convergence results

F decreases along γ̇ ∈ −DF (γ) (conservative gradient) + w is APT
= asymptotic descent.

Assumptions

• (wk)k∈N bounded a.s.

• αk > 0,
∑
αk = ∞,

∑
α2
k <∞

• ∥D(w, s)∥ ≤ κ(s)ψ(w), κ square integrable, ψ locally bounded.

Convergence results

• Ermoliev, Norkin (1998), Benaim, Hofbauer, Sorin (2005): accumulation
points w∗ s.t. lim infk→∞ F (wk) = F (w∗) satisfies 0 ∈ DF (w

∗)

• Bianchi, Rios-Zertuche (2021): essential accumulation points w∗ satisfy
0 ∈ DF (w

∗).

Essential accumulation point w∗ satisfies for all open U ∋ w∗,

lim sup
k→∞

∑k
i=0 αi1wi∈U∑k

i=0 αi

> 0 a.s.

Proportion of time spent around w∗

31 / 37

Convergence results

F decreases along γ̇ ∈ −DF (γ) (conservative gradient) + w is APT
= asymptotic descent.

Assumptions

• (wk)k∈N bounded a.s.

• αk > 0,
∑
αk = ∞,

∑
α2
k <∞

• ∥D(w, s)∥ ≤ κ(s)ψ(w), κ square integrable, ψ locally bounded.

Convergence results

• Ermoliev, Norkin (1998), Benaim, Hofbauer, Sorin (2005): accumulation
points w∗ s.t. lim infk→∞ F (wk) = F (w∗) satisfies 0 ∈ DF (w

∗)

• Bianchi, Rios-Zertuche (2021): essential accumulation points w∗ satisfy
0 ∈ DF (w

∗).

Essential accumulation point w∗ satisfies for all open U ∋ w∗,

lim sup
k→∞

∑k
i=0 αi1wi∈U∑k

i=0 αi

> 0 a.s.

Proportion of time spent around w∗
31 / 37

Sard condition

Furthermore, if

Sard condition

The set of critical values, {F (w) : 0 ∈ DF (w)} has empty interior.

Quite restrictive: holds if F and DF are semialgebraic (definable):

• P finite support

• P ≪ Lebesgue with semialgebraic density.1

Then

• F (wk) converges as k → ∞
• Every accumulation point w∗ of (wk)k∈N satisfies 0 ∈ DF (w

∗).

1Integration of constructible functions, Cluckers & Miller (2009)
32 / 37

Sard condition

Furthermore, if

Sard condition

The set of critical values, {F (w) : 0 ∈ DF (w)} has empty interior.

Quite restrictive: holds if F and DF are semialgebraic (definable):

• P finite support

• P ≪ Lebesgue with semialgebraic density.1

Then

• F (wk) converges as k → ∞
• Every accumulation point w∗ of (wk)k∈N satisfies 0 ∈ DF (w

∗).

1Integration of constructible functions, Cluckers & Miller (2009)
32 / 37

Clarke criticality for “most” sequences

Convergence to {0 ∈ DF } is unsatisfactory. We may have artificial critical points:

Theorem, Bolte & Pauwels (2020)

DF = ∇F Lebesgue almost everywhere.

→ Suspicion (true): convergence to {0 ∈ ∂cF} often happens.

There exists Γ ⊂ R, W ⊂ Rp “big” such that if {αk}k∈N ⊂ Γ, w0 ∈W ,

wk+1 = wk − αk(∇F (wk) + ϵk)

a.s., hence we have convergence to {0 ∈ ∂cF}

33 / 37

Clarke criticality for “most” sequences

Convergence to {0 ∈ DF } is unsatisfactory. We may have artificial critical points:

Theorem, Bolte & Pauwels (2020)

DF = ∇F Lebesgue almost everywhere.

→ Suspicion (true): convergence to {0 ∈ ∂cF} often happens.

There exists Γ ⊂ R, W ⊂ Rp “big” such that if {αk}k∈N ⊂ Γ, w0 ∈W ,

wk+1 = wk − αk(∇F (wk) + ϵk)

a.s., hence we have convergence to {0 ∈ ∂cF}

33 / 37

Clarke criticality for “most” sequences

Convergence to {0 ∈ DF } is unsatisfactory. We may have artificial critical points:

Theorem, Bolte & Pauwels (2020)

DF = ∇F Lebesgue almost everywhere.

→ Suspicion (true): convergence to {0 ∈ ∂cF} often happens.

There exists Γ ⊂ R, W ⊂ Rp “big” such that if {αk}k∈N ⊂ Γ, w0 ∈W ,

wk+1 = wk − αk(∇F (wk) + ϵk)

a.s., hence we have convergence to {0 ∈ ∂cF}
33 / 37

Clarke criticality for “most” sequences

How big?
- Bianchi, Hachem, Schechtman (2020): s ∼ P , f(·, s) C2 a.e. (e.g.
semigalgebraic, definable)

Γc and W c have zero Lebesgue measure,

Can we exploit the definability of f ?

- Bolte and Pauwels (2020): f definable, P finitely discrete.

Γc is finite, W c is a countable union of low dimensional manifolds.

- Bolte, L., Pauwels (2022): F (w) = Eξ∼P [f(w, ξ)], P ≪ Lebesgue, f jointly
definable.

Γc is finite, W c is a countable union of low dimensional manifolds.

34 / 37

Clarke criticality for “most” sequences

How big?
- Bianchi, Hachem, Schechtman (2020): s ∼ P , f(·, s) C2 a.e. (e.g.
semigalgebraic, definable)

Γc and W c have zero Lebesgue measure,

Can we exploit the definability of f ?

- Bolte and Pauwels (2020): f definable, P finitely discrete.

Γc is finite, W c is a countable union of low dimensional manifolds.

- Bolte, L., Pauwels (2022): F (w) = Eξ∼P [f(w, ξ)], P ≪ Lebesgue, f jointly
definable.

Γc is finite, W c is a countable union of low dimensional manifolds.

34 / 37

Versatility of the ODE approach: analysis of stochastic heavy
ball

Nonsmooth stochastic heavy ball

wk+1 =wk − αkyk

yk+1 ∈βkD(wk+1, ξk+1) + (1− βk)yk.

for all k ∈ N, αk > 0 and βk ∈ (0, 1).

Related works:

– Smooth setting: Gadat et al. (2018)

– Nonsmooth: Ruszczyński (2020), Bianchi & Rios-Zertuche (2021)

35 / 37

Versatility of the ODE approach: analysis of stochastic heavy
ball

Limiting dynamical system:

ẇ ∈ −ry
ẏ ∈ DF (w)− y.

Lyapunov function:

E(w, y) = F (w) +
r

2
∥y∥2

Stationary set:

{0 ∈ DF } × {0}

Artificial points avoidance:

If for a.e. s, f(·, s) is definable, then there exists W ⊂ Rp × Rp of full measure
such that if (w0, w1) ∈W , “accumulation points”a belong to {0 ∈ ∂cF} × {0}

aminimizing, essential, or all under Sard condition

36 / 37

Conclusion and perspectives

- Clarke subdifferential doesn’t come with a calculus, and can’t explain machine
learning practice. Conservative derivatives provide a justification to many
implementations

• nonsmooth automatic differentiation,

• Implicit differentiation → bi-level programming, optimization layers,
implicit layers

• Differentiation under integral → nonsmooth stochastic algorithms

• many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves → ODE approach → convergence results.

• Convergence theory incomplete: Sard condition in stochastic optimization,
complexity...

• Algorithmic extensions: constraints, biased oracle; beyond vanishing
stepsizes: adaptive algorithms; not i.i.d. samples, ...

• Can we develop “nonsmooth-friendly” algorithms?

Thank you!

37 / 37

Conclusion and perspectives

- Clarke subdifferential doesn’t come with a calculus, and can’t explain machine
learning practice. Conservative derivatives provide a justification to many
implementations

• nonsmooth automatic differentiation,

• Implicit differentiation → bi-level programming, optimization layers,
implicit layers

• Differentiation under integral → nonsmooth stochastic algorithms

• many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves → ODE approach → convergence results.

• Convergence theory incomplete: Sard condition in stochastic optimization,
complexity...

• Algorithmic extensions: constraints, biased oracle; beyond vanishing
stepsizes: adaptive algorithms; not i.i.d. samples, ...

• Can we develop “nonsmooth-friendly” algorithms?

Thank you!

37 / 37

Conclusion and perspectives

- Clarke subdifferential doesn’t come with a calculus, and can’t explain machine
learning practice. Conservative derivatives provide a justification to many
implementations

• nonsmooth automatic differentiation,

• Implicit differentiation → bi-level programming, optimization layers,
implicit layers

• Differentiation under integral → nonsmooth stochastic algorithms

• many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves → ODE approach → convergence results.

• Convergence theory incomplete: Sard condition in stochastic optimization,
complexity...

• Algorithmic extensions: constraints, biased oracle; beyond vanishing
stepsizes: adaptive algorithms; not i.i.d. samples, ...

• Can we develop “nonsmooth-friendly” algorithms?

Thank you!

37 / 37

Conclusion and perspectives

- Clarke subdifferential doesn’t come with a calculus, and can’t explain machine
learning practice. Conservative derivatives provide a justification to many
implementations

• nonsmooth automatic differentiation,

• Implicit differentiation → bi-level programming, optimization layers,
implicit layers

• Differentiation under integral → nonsmooth stochastic algorithms

• many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves → ODE approach → convergence results.

• Convergence theory incomplete: Sard condition in stochastic optimization,
complexity...

• Algorithmic extensions: constraints, biased oracle; beyond vanishing
stepsizes: adaptive algorithms; not i.i.d. samples, ...

• Can we develop “nonsmooth-friendly” algorithms?

Thank you!
37 / 37

Pathological examples: cycles

min
x,y,s

ℓ(x, y, s) := (x− s1)
2 + 4(y − s2)

2

s.t. s ∈ s(x, y) := argmax {(a+ b)(−3x+ y + 2) : a ∈ [0, 3], b ∈ [0, 5]} .

38 / 37

Pathological examples: lorenz attractor

max
u∈R3

uTz s.t. z ∈ argmin
s∈R3

∥s− F (u)∥4

F is Lorenz attractor vector field.

Optimality condition of the subproblem: ∥s− F (u)∥3(s− F (u)) = 0.
Very qualitative explanation: The “gradient” of uT z is

z(u) + Ĵac z(u)u

Ĵac is provided using the pseudo-inverse in the implicit differentiation formula,
equal to zero. z(u) = F (u). Finally, gradient ascent is approximately the Lorenz
attractor.

39 / 37

Failure of Clarke calculus

Counterexample to a potential Clarke integral rule.
Let f : (w, s) 7→ s|w| and P = 1

2δ−1 +
1
2δ1 or P is the uniform density on [−1, 1].

Then if F (w) :=
∫
[−1,1]

f(w, s) dP (s), one has ∂cF (w) = 0 for all w ∈ R, but
Eξ∼P [∂

c
wf(0, ξ)] = [−1, 1].

Counterexample to a potential “Clarke implicit differentiation”
Let Ψ = Φ−1

Φ(x, y) = (|x|+ y, 2x+ |y|)

Implicit differentiation on (u, v) → u−Ψ(v) gives

[Jacc Ψ(0)]−1 ̸⊂ [Jacc Φ(0)]

40 / 37

Norkin semismooth gradient

Let F : Rp → R locally Lipschitz, DF is a semismooth generalized gradient if

F (y) = f(x) + ⟨v, y − x⟩+ o(∥x− y∥) as y → x, for all v ∈ DF (y).

Asymptotic descent lemma (Ermoliev, Norkin 1998)

Let (wk) generated by SGD, assume [...]. Let w∗ be an accumulation point such
that 0 /∈ DF (w

∗), (wik)k∈N a subsequence converging to w∗.

Then for any ϵ > 0, there exists a subsequence (wlk)k∈N such that ∥wk −w∗∥ ≤ ϵ
for all k ∈ [ik, lk), and

lim sup
k

F (wlk) < F (w∗)

41 / 37

Definition: definable in an o-minimal structure

Definition (o-minimal structure)

Let O = (Op)p∈N be a collection of sets such that, for all p ∈ N, Op is a set of
subsets of Rp. O is an o-minimal structure on (R,+, ·) if it satisfies the following
axioms, for all p ∈ N:
1. Op is stable by finite intersection, union, and complementation, and contains
Rp.
2. If A ∈ Op then A× R and R×A belong to Op+1.
3. If A ∈ Op+1 then π(A) ∈ Op, where π projects on the p first coordinates,.
4. Op contains all sets of the form {x ∈ Rp : P (x) = 0}, where P is a polynomial.
5. The elements of O1 are exactly the finite unions of intervals.

42 / 37

	Appendix

