Nonsmooth calculus and optimization in machine learning: first-order sampling and implicit differentiation PhD defense

Tam Le

advised by Jérôme Bolte (TSE) and Edouard Pauwels (TSE), joint work with Antonio Silveti-Falls (CentraleSupelec)

Many machine learning problems cast into an optimization problem.

 $\underset{\mathbf{w}\in\mathbb{R}^{p}}{\mathsf{Minimize}} \quad F(\mathbf{w})$

First-order methods, e.g. gradient method are really popular

 $w_{k+1} = w_k - \alpha_k \nabla F(w_k)$

Many machine learning problems cast into an optimization problem.

 $\underset{\mathbf{w}\in\mathbb{R}^{p}}{\mathsf{Minimize}} \quad F(\mathbf{w})$

First-order methods, e.g. gradient method are really popular

$$w_{k+1} = w_k - \alpha_k \nabla F(w_k)$$

• Automatic differentiation libraries (Pytorch, Tensorflow, JAX)

Many machine learning problems cast into an optimization problem.

 $\underset{\mathbf{w}\in\mathbb{R}^{p}}{\mathsf{Minimize}} \quad F(\mathbf{w})$

First-order methods, e.g. gradient method are really popular

$$w_{k+1} = w_k - \alpha_k (\nabla F(w_k) + \epsilon_k)$$

- Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
- Can be adapted to handle massive training sets (Stochastic algorithms)

Many machine learning problems cast into an optimization problem.

 $\underset{\mathbf{w}\in\mathbb{R}^{p}}{\mathsf{Minimize}} \quad F(\mathbf{w})$

First-order methods, e.g. gradient method are really popular

$$w_{k+1} = w_k - \alpha_k (\nabla F(w_k) + \epsilon_k)$$

- Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
- Can be adapted to handle massive training sets (Stochastic algorithms)
- Computational power (GPU)

Many machine learning problems cast into an optimization problem.

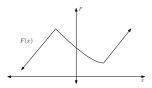
 $\underset{\mathbf{w}\in\mathbb{R}^{p}}{\mathsf{Minimize}} \quad F(\mathbf{w})$

First-order methods, e.g. gradient method are really popular

$$w_{k+1} = w_k - \alpha_k (\nabla F(w_k) + \epsilon_k)$$

- Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
- Can be adapted to handle massive training sets (Stochastic algorithms)
- Computational power (GPU)

Observation: In many practical situations, *F* is **nonconvex and nonsmooth**.



Supervised learning.

$$\underset{\mathbf{w} \in \mathbb{R}^p}{\text{Minimize}} \quad \mathbb{E}_{(x,y) \sim P}[d(h(\mathbf{w}, x), y)]$$

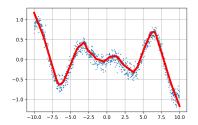
prediction task $h(w, x) \approx y$

Example 1: neural networks

Supervised learning.

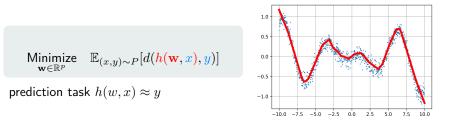
$$\underset{\mathbf{w} \in \mathbb{R}^p}{\mathsf{Minimize}} \quad \mathbb{E}_{(x,y) \sim P}[d(\mathbf{h}(\mathbf{w}, x), y)]$$

prediction task $h(w, x) \approx y$



Example 1: neural networks

Supervised learning.



Neural networks. In deep learning, predictions are built upon multiple compositions.

$$h(w,x) = \sigma_L(A_L\sigma_{L-1}(A_{L-1}\dots\sigma_2(A_2\sigma_1(A_1x+b_1)+b_2)+b_{L-1}\dots)+b_L)$$

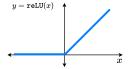
$$w = (A_1, A_2\dots A_L, b_1, \dots, b_L).$$

many applications: image classification, speech recognition, language prediction...

Example 1: neural networks

The σ_i are nonlinear and often **nonsmooth** functions: **ReLU function**

$$\texttt{reLU}(x) = \left\{ \begin{array}{ll} x & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{array} \right.$$



nonsmooth at 0.

MaxPooling

MaxPooling
$$\begin{pmatrix} 3 & 1 & \mathbf{13} & 8 \\ 7 & \mathbf{20} & 6 & 2 \\ \mathbf{7} & 3 & \mathbf{5} & 4 \\ 6 & 2 & 1 & 5 \end{pmatrix} = \begin{bmatrix} \mathbf{20} & \mathbf{13} \\ \mathbf{7} & \mathbf{5} \end{bmatrix}$$
.

max function is nonsmooth when components are equal.

Example 2: Bi-level optimization

 $\underset{w \in \mathbb{R}^p}{\text{Minimize}} \ F(w,z) \quad \text{ s.t. } z \in \operatorname*{argmin}_{\theta \in \mathcal{C}} g(w,\theta).$

Studied beforehand in economics game theory (Stackelberg, 1952), optimization (Bracken and McGill (1973), Dempe, Ye...). Renewed interest in machine learning:

Example 2: Bi-level optimization

 $\underset{w \in \mathbb{R}^p}{\text{Minimize}} \ F(w,z) \quad \text{ s.t. } z \in \operatorname*{argmin}_{\theta \in \mathcal{C}} g(w,\theta).$

Studied beforehand in economics game theory (Stackelberg, 1952), optimization (Bracken and McGill (1973), Dempe, Ye...).

Renewed interest in machine learning:

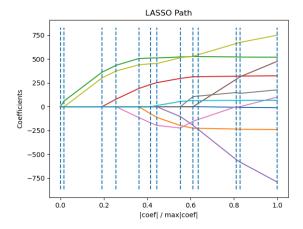
• Optimization layers, Amos & Kolter 2017.

$$\xrightarrow{x} \mathbf{z} \in \operatorname{argmin}_{\theta \in \mathcal{C}} g(w, x, \theta) \xrightarrow{z}$$

• Hyperparameter optimization: Bengio 2000; Do et al. 2007; Bertrand et al. 2020 Example of the lasso:

$$\begin{array}{l} \underset{\lambda}{\text{Minimize Criterion}(\beta(\lambda))} \\ \text{s.t. } \beta(\lambda) \in \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \|X\beta - Y\|^2 + \lambda \|\beta\|_1. \end{array}$$

LASSO path $\beta(\cdot)$ is piecewise linear.



Outline

Observation: a gap between the classical theory in nonsmooth opt. vs practice in ML

- First-order methods, "gradient methods" are used on nonsmooth functions in practice, thanks to automatic differentiation libraries.
- The classical theory for nonsmooth functions (Clarke subgradient) doesn't explain this practice.

Outline

Observation: a gap between the classical theory in nonsmooth opt. vs practice in ML

- First-order methods, "gradient methods" are used on nonsmooth functions in practice, thanks to automatic differentiation libraries.
- The classical theory for nonsmooth functions (Clarke subgradient) doesn't explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called **Conservative derivatives**, which justifies automatic differentiation.

We propose two extensions

- Differentiation under nonsmooth expectation \rightarrow stochastic methods.
- Nonsmooth Implicit differentiation \rightarrow gradient methods for bi-level problems.

Outline

Observation: a gap between the classical theory in nonsmooth opt. vs practice in ML

- First-order methods, "gradient methods" are used on nonsmooth functions in practice, thanks to automatic differentiation libraries.
- The classical theory for nonsmooth functions (Clarke subgradient) doesn't explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives

We focus on generalized derivatives called **Conservative derivatives**, which justifies automatic differentiation.

We propose two extensions

- Differentiation under nonsmooth expectation \rightarrow stochastic methods.
- Nonsmooth Implicit differentiation \rightarrow gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using **ODE** approaches, we show the convergence of nonsmooth stochastic optimization algorithms as implemented in practice.

● Nonsmooth optimization: classical theory and practice in ML

2 Nonsmooth calculus with Conservative derivatives

Analysis of nonsmooth first-order algorithms

● Nonsmooth optimization: classical theory and practice in ML

2 Nonsmooth calculus with Conservative derivatives

3 Analysis of nonsmooth first-order algorithms

A glance at the differentiable setting

Gradient method

 $w_{k+1} = w_k - \alpha_k \nabla F(w_k).$

• $-\nabla F$ generates **descent** trajectories, F decreases along the gradient curves

 $\dot{w} = -\nabla F(w).$

 \rightarrow Gradient method as ODE discretization.

• ∇F can be computed by calculus rules: $\nabla(f+g) = \nabla f + \nabla g$, $\operatorname{Jac}(u \circ v) = (\operatorname{Jac} u \circ v) \operatorname{Jac} v \dots$

What if F is nonsmooth?

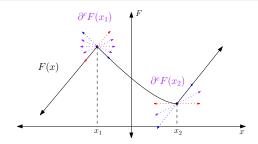
The Clarke subgradient: gradient for nonsmooth functions

Let $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz, differentiable on \dim_F of full Lebesgue measure.

Clarke subgradient ∂^c

$$\partial^{c} F(x) = \operatorname{conv} \left\{ \lim_{k \to +\infty} \nabla F(x_{k}) : x_{k} \in \operatorname{diff}_{F}, x_{k} \xrightarrow[k \to +\infty]{} x \right\}$$

(extends to Jacobians)



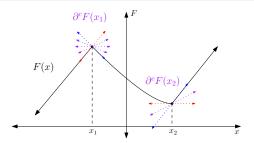
The Clarke subgradient: gradient for nonsmooth functions

Let $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz, differentiable on \dim_F of full Lebesgue measure.

Clarke subgradient ∂^c

$$\partial^{c} F(x) = \operatorname{conv} \left\{ \lim_{k \to +\infty} \nabla F(x_{k}) : x_{k} \in \operatorname{diff}_{F}, x_{k} \xrightarrow[k \to +\infty]{} x \right\}$$

(extends to Jacobians)



 $\partial^c F$ is graph-closed, locally bounded, convex-valued. \rightarrow existence of the continuous dynamic $\dot{x} \in -\partial^c F(x)$. \rightarrow subgradient method $w_{k+1} \in w_k - \alpha_k \partial^c F(w_k)$ as ODE discretization.

Do we have descent along $\dot{\gamma} \in -\partial^c F(\gamma)$?

Not in general. There exist Lipschitz functions F such that $\partial^c F = B(0,1)$ everywhere.

Do we have descent along $\dot{\gamma} \in -\partial^c F(\gamma)$?

Not in general. There exist Lipschitz functions F such that $\partial^c F = B(0,1)$ everywhere.

Path differentiability, Valadier 1989

Let F locally Lipschitz. F is called path-differentiable if for all absolutely continuous curve $\gamma: [0,1] \to \mathbb{R}^p$, for almost all $t \in [0,1]$

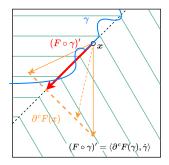
$$\frac{\mathrm{d}}{\mathrm{d}t}(F\circ\gamma)(t) = \langle v,\dot{\gamma}(t)\rangle, \quad \forall v\in\partial^c F(\gamma(t)).$$

 \rightarrow enforces descent along the curves $\dot{\gamma}\in -\partial^c F(\gamma)$:

\rightarrow Path differentiable functions are ubiquitous in practice.

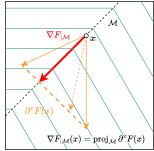
- Convex functions (Brézis, 1973)
- Semialgebraic (~ piecewise polynomial), definable functions, (Davis et al., 2019).
- **Definable functions**: functions written as compositions involving elementary functions (if, else, +, ·, ×, exp, log)

- \rightarrow Path differentiable functions are ubiquitous in practice.
 - Convex functions (Brézis, 1973)
 - Semialgebraic (~ piecewise polynomial), definable functions, (Davis et al., 2019).
 - **Definable functions**: functions written as compositions involving elementary functions (if, else, +, ·, ×, exp, log)



\rightarrow Path differentiable functions are ubiquitous in practice.

- Convex functions (Brézis, 1973)
- Semialgebraic (~ piecewise polynomial), definable functions, (Davis et al., 2019).
- **Definable functions**: functions written as compositions involving elementary functions (if, else, +, ·, ×, exp, log)



Projection formula, Bolte et al. 2007

• The Clarke subgradient provides descent for path-differentiable functions.

The Clarke subgradient provides descent for path-differentiable functions.
 → Can we easily compute elements of the Clarke subgradient? Does automatic differentiation output Clarke subgradients?

- The Clarke subgradient provides descent for path-differentiable functions.
 → Can we easily compute elements of the Clarke subgradient? Does automatic differentiation output Clarke subgradients?
- Definable functions: functions implemented in practice are path-differentiable.

- The Clarke subgradient provides descent for path-differentiable functions.
 → Can we easily compute elements of the Clarke subgradient? Does automatic differentiation output Clarke subgradients?
- Definable functions: functions implemented in practice are path-differentiable. \rightarrow What can we say about **expectation** minimization $F(w) = \mathbb{E}_{\xi \sim P}[f(w, \xi)]$?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

$$\operatorname{relu}(x) = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{else.} \end{cases} \xrightarrow[]{} \operatorname{relu}'(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{else.} \end{cases}$$

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

$$\operatorname{relu}(x) = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{else.} \end{cases} \xrightarrow[]{} \operatorname{relu}'(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{else.} \end{cases}$$

How about compositions, e.g. neural nets?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

$$\operatorname{relu}(x) = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{else.} \end{cases} \xrightarrow[]{} \operatorname{relu}'(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{else.} \end{cases}$$

How about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule on Clarke derivatives.

$$f(w) = g_r \circ g_{r-1} \circ \ldots \circ g_1(w)$$

autodiff_w
$$f(w) \in \partial^c g_r(g_{r-1} \circ \ldots \circ g_1(w))^T$$

 $\times \operatorname{Jac}^c g_{r-1}(g_{r-2} \circ \ldots \circ g_1(w)) \times \ldots \times \operatorname{Jac}^c_w g_1(w).$

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

$$\operatorname{relu}(x) = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{else.} \end{cases} \xrightarrow[]{} \operatorname{relu}'(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{else.} \end{cases}$$

How about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule on Clarke derivatives.

$$f(w) = g_r \circ g_{r-1} \circ \ldots \circ g_1(w)$$

autodiff_w
$$f(w) \in \partial^c g_r (g_{r-1} \circ \ldots \circ g_1(w))^T$$

 $\times \operatorname{Jac}^c g_{r-1} (g_{r-2} \circ \ldots \circ g_1(w)) \times \ldots \times \operatorname{Jac}_w^c g_1(w).$

But do calculus rules apply to Clarke derivatives?

No.

- (Sum rule) $\partial^c (f+g) \subsetneq \partial^c f + \partial^c g$.
- (Composition rule) $\operatorname{Jac}^{c}(F \circ G) \subsetneq \operatorname{conv} \operatorname{Jac}^{c} F(G) \operatorname{Jac}^{c} G$,

Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize $F = \mathbb{E}_{\xi \sim P}[f(\cdot, \xi)]$ we may sample $\nabla_w f(\cdot, \xi)$, $\xi \sim P$ to have a noisy estimate of

 $\mathbb{E}_{\xi \sim P}[\nabla_w f(\cdot, \xi)] = \nabla F \qquad (\text{Differentiation under integral})$

 \rightarrow <u>Practice</u>: f is nonsmooth, autodiff_w $f(w,\xi)$ is sampled instead of $\nabla_w f(w,\xi)$.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize $F = \mathbb{E}_{\xi \sim P}[f(\cdot, \xi)]$ we may sample $\nabla_w f(\cdot, \xi)$, $\xi \sim P$ to have a noisy estimate of

 $\mathbb{E}_{\xi \sim P}[\nabla_w f(\cdot, \xi)] = \nabla F \qquad (\text{Differentiation under integral})$

 \rightarrow <u>Practice</u>: f is nonsmooth, autodiff_w $f(w,\xi)$ is sampled instead of $\nabla_w f(w,\xi)$.

Example 2. Implicit differentiation. H(x, y) = 0, H continuously differentiable. How to differentiate y w.r.t. x?

$$\frac{\partial y}{\partial x} = -\left[\frac{\partial H}{\partial y}\right]^{-1} \frac{\partial H}{\partial x}$$
 (Implicit differentiation)

 \rightarrow <u>Practice</u>: *H* nonsmooth (e.g. optimality conditions). ∂H is replaced by autodiff *H*.

() Nonsmooth optimization: classical theory and practice in ML

2 Nonsmooth calculus with Conservative derivatives

3 Analysis of nonsmooth first-order algorithms

Conservative gradients, Bolte & Pauwels (2021)

Let $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz, and a set-valued map $D : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, D is a **conservative gradient** for F if

- It generates descent trajectories

For all absolutely continuous curve $\gamma : [0,1] \to \mathbb{R}^n$, $\frac{\mathrm{d}}{\mathrm{d}t}(F \circ \gamma)(t) = \langle v, \dot{\gamma}(t) \rangle, \quad \forall v \in D(\gamma(t)),$ for almost all $t \in [0,1]$. (extends to Jacobians)

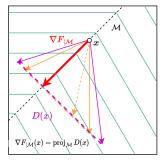
F decreases along $\dot{\gamma}\in -D(\gamma)$

Conservative gradients, Bolte & Pauwels (2021)

Let $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz, and a set-valued map $D : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, D is a **conservative gradient** for F if

- It generates descent trajectories

For all absolutely continuous curve $\gamma: [0,1] \to \mathbb{R}^n$, $\frac{\mathrm{d}}{\mathrm{d}t}(F \circ \gamma)(t) = \langle v, \dot{\gamma}(t) \rangle, \quad \forall v \in D(\gamma(t)),$ for almost all $t \in [0,1]$. (extends to Jacobians)



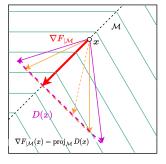
F decreases along $\dot{\gamma}\in -D(\gamma)$

Conservative gradients, Bolte & Pauwels (2021)

Let $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz, and a set-valued map $D : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, D is a **conservative gradient** for F if

- It generates descent trajectories

For all absolutely continuous curve $\gamma : [0,1] \to \mathbb{R}^n$, $\frac{\mathrm{d}}{\mathrm{d}t}(F \circ \gamma)(t) = \langle v, \dot{\gamma}(t) \rangle, \quad \forall v \in D(\gamma(t)),$ for almost all $t \in [0,1]$. (extends to Jacobians)



F decreases along $\dot{\gamma}\in -D(\gamma)$

- Existence of the flow $\dot{\gamma} \in -D(\gamma)$:

D is graph-closed, nonempty (convex) valued, locally bounded.

- $\partial^c F$ is the minimal conservative gradient: if $\exists D_F$ conservative, then F is path differentiable.

- $\partial^c F$ is the minimal conservative gradient: if $\exists D_F$ conservative, then F is path differentiable.

- **Sum rule** Let D_f , D_g be conservative gradients for f and g, $D_f + D_g$ is conservative gradient for f + g.

- Chain rule Let J_u , J_v be conservative Jacobians for u and v. $J_u(v)J_v$ is conservative Jacobian for $u \circ v$. \rightarrow automatic differentiation outputs conservative Jacobians.

- $\partial^c F$ is the minimal conservative gradient: if $\exists D_F$ conservative, then F is path differentiable.

- **Sum rule** Let D_f , D_g be conservative gradients for f and g, $D_f + D_g$ is conservative gradient for f + g.

- Chain rule Let J_u , J_v be conservative Jacobians for u and v. $J_u(v)J_v$ is conservative Jacobian for $u \circ v$. \rightarrow automatic differentiation outputs conservative Jacobians.

Two extensions to conservative calculus.

1. Implicit differentiation. Given

$$F(x,y) = 0$$

where F is nonsmooth, how to "differentiate" y with respect to x? \rightarrow differentiating solutions path.

- $\partial^c F$ is the minimal conservative gradient: if $\exists D_F$ conservative, then F is path differentiable.

- **Sum rule** Let D_f , D_g be conservative gradients for f and g, $D_f + D_g$ is conservative gradient for f + g.

- Chain rule Let J_u , J_v be conservative Jacobians for u and v. $J_u(v)J_v$ is conservative Jacobian for $u \circ v$. \rightarrow automatic differentiation outputs conservative Jacobians.

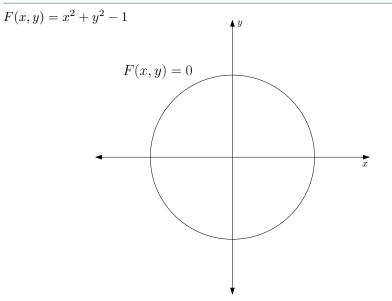
Two extensions to conservative calculus.

1. Implicit differentiation. Given

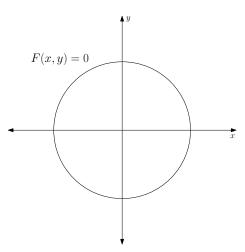
$$F(x,y) = 0$$

where F is nonsmooth, how to "differentiate" y with respect to x? \rightarrow differentiating solutions path.

2. Integral rule. "differentiating" under integral/expectation $F = \mathbb{E}_{\xi \sim P}[f(\cdot, \xi)] \rightarrow$ nonsmooth stochastic methods.

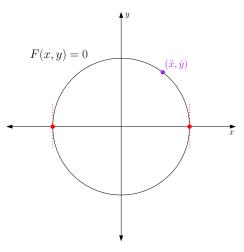


Existence and regularity.



Existence and regularity. Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ continuously differentiable and (\hat{x}, \hat{y}) such that

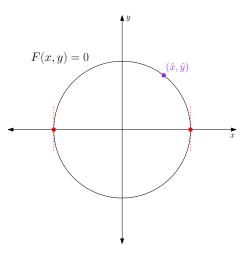
$$F(\hat{x}, \hat{y}) = 0$$



Existence and regularity. Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ continuously differentiable and (\hat{x}, \hat{y}) such that

$$F(\hat{x}, \hat{y}) = 0$$

and $\frac{\partial F}{\partial y}(\hat{x},\hat{y})$ is invertible



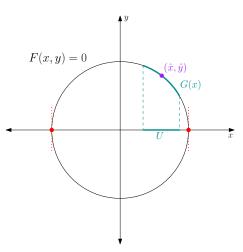
Existence and regularity.

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ continuously differentiable and (\hat{x}, \hat{y}) such that

$$F(\hat{x}, \hat{y}) = 0$$

and $\frac{\partial F}{\partial y}(\hat{x}, \hat{y})$ is invertible Then there exists a neighborhood Ucontaining \hat{x} , and a unique continuously differentiable function $G: U \to \mathbb{R}^m$, verifying for all $x \in U$

$$F(x,G(x)) = 0.$$



1. The (smooth) Implicit Differentiation formula

$$F(\hat{x}, G(\hat{x})) = 0.$$

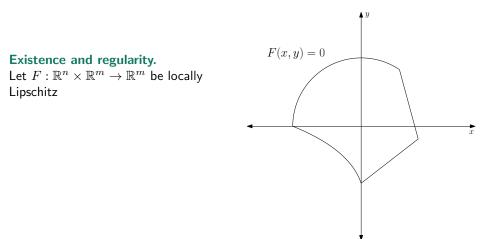
1. The (smooth) Implicit Differentiation formula

 $F(\hat{x}, G(\hat{x})) = 0.$

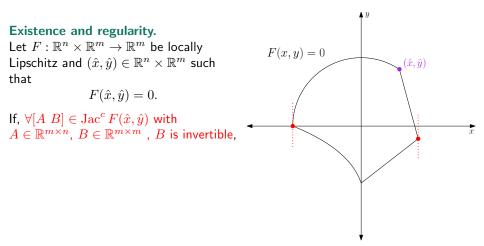
Differentiating the equality on U leads to the **implicit differentiation** formula

$$\frac{\partial G}{\partial x}(\hat{x}) = -\left[\frac{\partial F}{\partial y}(\hat{x}, \hat{y})\right]^{-1} \frac{\partial F}{\partial x}(\hat{x}, \hat{y}).$$

1. Nonsmooth Implicit Function Theorem (Clarke, 1976)



1. Nonsmooth Implicit Function Theorem (Clarke, 1976)



Existence and regularity.

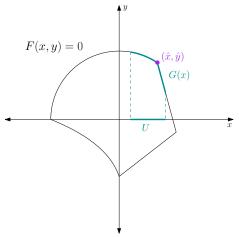
Let $F:\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^m$ be locally Lipschitz and $(\hat{x},\hat{y})\in\mathbb{R}^n\times\mathbb{R}^m$ such that

$$F(\hat{x}, \hat{y}) = 0.$$

If, $\forall [A \ B] \in \operatorname{Jac}^c F(\hat{x}, \hat{y})$ with $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times m}$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a locally Lipschitz function G(x) so that

$$F(x, G(x)) = 0 \qquad \forall x \in U,$$

and y = G(x) is the unique such solution in a neighborhood of \hat{y} .



1. Nonsmooth Implicit Function Theorem (Clarke, 1976)

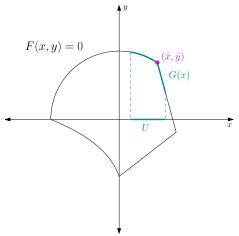
Existence and regularity. Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

$$F(\hat{x}, \hat{y}) = 0.$$

If, $\forall [A \ B] \in \operatorname{Jac}^c F(\hat{x}, \hat{y})$ with $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times m}$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a locally Lipschitz function G(x) so that

$$F(x,G(x)) = 0 \qquad \forall x \in U,$$

and y = G(x) is the unique such solution in a neighborhood of \hat{y} .



Nonsmooth implicit differentiation, Bolte, L., Pauwels, Silveti-Falls (2021)

Assume inplace that F is path-differentiable (semi-alg.). Then G is path-differentiable and

$$J_G(x) = \{ -B^{-1}A \mid [A \ B] \in \operatorname{Jac}^c F(x, G(x)) \}$$

is a **conservative Jacobian** for G.

Illustrative example: lasso hyperparameter optimization

Lasso hyperparameter tuning

$$\begin{split} & \underset{\lambda}{\text{Minimize }} C(\beta(\lambda)) \\ & \text{s.t. } \beta(\lambda) \in \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \|X\beta - Y\|^2 + e^{\lambda} \|\beta\|_1. \end{split}$$

Let's apply nonsmooth implicit differentiation to $\beta(\lambda)$: **1. Implicit relation between** β and λ = optimality condition:

$$F(\beta,\lambda) = \beta - \operatorname{prox}_{e^{\lambda} \|\cdot\|_1} (\beta - e^{\lambda} X^T (X\beta - Y)) = 0$$

Lasso hyperparameter tuning

$$\begin{split} & \underset{\lambda}{\text{Minimize } C(\beta(\lambda))} \\ & \text{s.t. } \beta(\lambda) \in \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \|X\beta - Y\|^2 + e^{\lambda} \|\beta\|_1. \end{split}$$

Let's apply nonsmooth implicit differentiation to $\beta(\lambda)$: **1. Implicit relation between** β and λ = optimality condition:

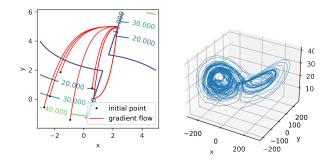
$$F(\beta,\lambda) = \beta - \operatorname{prox}_{e^{\lambda} \|\cdot\|_1} (\beta - e^{\lambda} X^T (X\beta - Y)) = 0$$

2. Uniqueness/invertibility assumption: (Osborne et al. 2000; Mairal, Yu 2012)

Define the equicorrelation set $\mathcal{E} := \{j \in \{1, \dots, p\} : |X_j^{\mathsf{T}}(y - X\hat{\beta}(\lambda))| = e^{\lambda}\}$ and assume $X_{\mathcal{E}}^T X_{\mathcal{E}}$ has full rank

Then: nonsmooth implicit differentiation applies to *F*.

Invertibility condition is essential to satisfy: otherwise it can give really pathological training dynamics!



Other applications

- Differentiating through cone programs
- Implicit layers, Deep equilibrium networks

$$\mathbf{z} = \sigma(W\mathbf{z} + b + Ux)$$

2. Integral rule

Stochastic minimization Consider

$$F(w) := \mathbb{E}_{\xi \sim P}[f(\cdot, \xi)]$$

Under mild conditions, one can differentiate under $\mathbb{E} \colon$

$$\nabla F = \mathbb{E}_{\xi \sim P}[\nabla_w f(\cdot, \xi)]$$

First-order sampling: Sample $\xi \sim P$, $\nabla_w f(w, \xi) \approx \nabla F(w)$

 \rightarrow Stochastic gradient method: $w_{k+1} = w_k - \alpha_k \nabla_w f(w_k, \xi_k)$

2. Integral rule

Stochastic minimization Consider

$$F(w) := \mathbb{E}_{\xi \sim P}[f(\cdot, \xi)]$$

Under mild conditions, one can differentiate under $\mathbb{E} \colon$

$$\nabla F = \mathbb{E}_{\xi \sim P}[\nabla_w f(\cdot, \xi)]$$

First-order sampling: Sample $\xi \sim P$, $\nabla_w f(w,\xi) \approx \nabla F(w)$ \rightarrow Stochastic gradient method: $w_{k+1} = w_k - \alpha_k \nabla_w f(w_k,\xi_k)$

In practice, $f(\cdot,\xi)$ is $\underline{\text{nonsmooth}},$ and

 $\partial^c F \subsetneq \mathbb{E}_{\xi \sim P}[\partial^c_w f(\cdot, \xi)]$

But we have access to a conservative gradient of $f(\cdot,\xi)$, $D(\cdot,\xi)$, e.g., autodiff.

Question: What is the expectation $\mathbb{E}_{\xi \sim P}[D(\cdot, \xi)]$?

Theorem (Bolte, L., Pauwels 2022)

If $D(\cdot,\xi)$ is conservative gradient for $f(\cdot,\xi)$, then $\mathbb{E}_{\xi \sim P}[D(\cdot,\xi)]$ is a conservative gradient for F.

Theorem (Bolte, L., Pauwels 2022)

If $D(\cdot,\xi)$ is conservative gradient for $f(\cdot,\xi)$, then $\mathbb{E}_{\xi \sim P}[D(\cdot,\xi)]$ is a conservative gradient for F.

Assumptions:

1. (Measurability assumptions) ...

2. (Boundedness assumption) For all compact subset $C \subset \mathbb{R}^p$, there exists an integrable function $\kappa: S \to \mathbb{R}_+$ such that for all

$$(x,s) \in C \times S, ||D(x,s)|| \le \kappa(s)$$

where for $(x,s)\in \mathbb{R}^p\times S,$ $\|D(x,s)\|:=\sup_{y\in D(x,s)}\|y\|.$

Main outcomes:

- Justifies first-order sampling in practical implementations: e.g. autodiff or implicit differentiation.
- F is path-differentiable, under simple assumptions.

() Nonsmooth optimization: classical theory and practice in ML

2 Nonsmooth calculus with Conservative derivatives

3 Analysis of nonsmooth first-order algorithms

Nonsmooth Stochastic Gradient method in practical implementations

We consider the problem

$$\underset{\mathbf{w}\in\mathbb{R}^p}{\text{Minimize}} \quad F(\mathbf{w}) := \mathbb{E}_{\xi\sim P}[f(\mathbf{w},\xi)],$$

We study a nonsmooth stochastic gradient method

$$w_{k+1} \in w_k - \alpha_k D(w_k, \xi_k). \tag{1}$$

For $\xi \in \mathbb{R}^m$, $D(\cdot, \xi)$ is a conservative gradient for $f(\cdot, \xi) \to$ encompasses practical calculus: autodiff, implicit differentiation in the nonsmooth setting

Nonsmooth Stochastic Gradient method in practical implementations

We consider the problem

$$\underset{\mathbf{w}\in\mathbb{R}^{p}}{\mathsf{Minimize}} \quad F(\mathbf{w}) := \mathbb{E}_{\xi\sim P}[f(\mathbf{w},\xi)],$$

We study a nonsmooth stochastic gradient method

$$w_{k+1} \in w_k - \alpha_k D(w_k, \xi_k). \tag{1}$$

For $\xi \in \mathbb{R}^m$, $D(\cdot, \xi)$ is a conservative gradient for $f(\cdot, \xi) \to$ encompasses practical calculus: autodiff, implicit differentiation in the nonsmooth setting

Integral rule: (1) writes

$$w_{k+1} \in w_k - \alpha_k (D_F(w_k) + \epsilon_k),$$

where $D_F = \mathbb{E}_{\xi \sim P}[D(\cdot, \xi)]$ is conservative gradient for F, ϵ_k has zero conditional mean w.r.t. w_k .

The ODE approach

Studying algorithms as ODE discretizations:

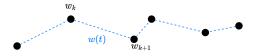
$$\frac{w_{k+1} - w_k}{\alpha_k} = -D_F(w_k) + \epsilon_k \qquad \rightsquigarrow \qquad \dot{\gamma} \in -D_F(\gamma) \tag{2}$$

The ODE approach

Studying algorithms as ODE discretizations:

$$\frac{w_{k+1} - w_k}{\alpha_k} = -D_F(w_k) + \epsilon_k \qquad \rightsquigarrow \qquad \dot{\gamma} \in -D_F(\gamma) \tag{2}$$

Interpolated process w:



Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

 $w: \mathbb{R}_+ \to \mathbb{R}^p$ is an asymptotic pseudo trajectory (APT) if for all T > 0,

$$\lim_{t \to \infty} \quad \inf_{\gamma \text{ solution }} \quad \sup_{s \in [0,T]} \|w(t+s) - \gamma(s)\| = 0.$$

The ODE approach

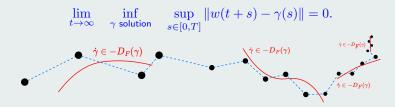
Studying algorithms as ODE discretizations:

$$\frac{w_{k+1} - w_k}{\alpha_k} = -D_F(w_k) + \epsilon_k \qquad \rightsquigarrow \qquad \dot{\gamma} \in -D_F(\gamma) \tag{2}$$

Interpolated process w:

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

 $w: \mathbb{R}_+ \to \mathbb{R}^p$ is an asymptotic pseudo trajectory (APT) if for all T > 0,



Convergence results

 $F \text{ decreases along } \dot{\gamma} \in -D_F(\gamma) \text{ (conservative gradient)} + w \text{ is APT} \\ = \text{ asymptotic descent.}$

Assumptions

- $(w_k)_{k\in\mathbb{N}}$ bounded a.s.
- $\alpha_k > 0$, $\sum \alpha_k = \infty$, $\sum \alpha_k^2 < \infty$
- $||D(w,s)|| \le \kappa(s)\psi(w)$, κ square integrable, ψ locally bounded.

Convergence results

- Ermoliev, Norkin (1998), Benaim, Hofbauer, Sorin (2005): accumulation points w^{*} s.t. lim inf_{k→∞} F(w_k) = F(w^{*}) satisfies 0 ∈ D_F(w^{*})
- Bianchi, Rios-Zertuche (2021): essential accumulation points w^{*} satisfy 0 ∈ D_F(w^{*}).

Convergence results

 $F \text{ decreases along } \dot{\gamma} \in -D_F(\gamma) \text{ (conservative gradient)} + w \text{ is APT} \\ = \text{ asymptotic descent.}$

Assumptions

- $(w_k)_{k\in\mathbb{N}}$ bounded a.s.
- $\alpha_k > 0$, $\sum \alpha_k = \infty$, $\sum \alpha_k^2 < \infty$
- $\|D(w,s)\| \le \kappa(s)\psi(w)$, κ square integrable, ψ locally bounded.

Convergence results

- Ermoliev, Norkin (1998), Benaim, Hofbauer, Sorin (2005): accumulation points w^{*} s.t. lim inf_{k→∞} F(w_k) = F(w^{*}) satisfies 0 ∈ D_F(w^{*})
- Bianchi, Rios-Zertuche (2021): essential accumulation points w^* satisfy $0 \in D_F(w^*)$.

Essential accumulation point w^* satisfies for all open $U \ni w^*$,

$$\limsup_{k \to \infty} \frac{\sum_{i=0}^k \alpha_i \mathbf{1}_{w_i \in U}}{\sum_{i=0}^k \alpha_i} > 0 \quad \text{a.s.}$$
Proportion of time spent around w^*

Furthermore, if

Sard condition

The set of critical values, $\{F(w) : 0 \in D_F(w)\}$ has empty interior.

Quite restrictive: holds if F and D_F are semialgebraic (definable):

- P finite support
- $P \ll$ Lebesgue with semialgebraic density.¹

¹Integration of constructible functions, Cluckers & Miller (2009)

Furthermore, if

Sard condition

The set of critical values, $\{F(w) : 0 \in D_F(w)\}$ has empty interior.

Quite restrictive: holds if F and D_F are semialgebraic (definable):

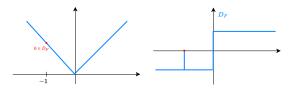
- P finite support
- $P \ll$ Lebesgue with semialgebraic density.¹

Then

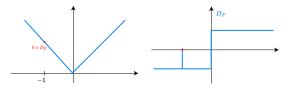
- $F(w_k)$ converges as $k \to \infty$
- Every accumulation point w^* of $(w_k)_{k\in\mathbb{N}}$ satisfies $0\in D_F(w^*)$.

¹Integration of constructible functions, Cluckers & Miller (2009)

Convergence to $\{0 \in D_F\}$ is unsatisfactory. We may have artificial critical points:



Convergence to $\{0 \in D_F\}$ is unsatisfactory. We may have artificial critical points:

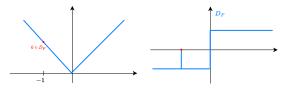


Theorem, Bolte & Pauwels (2020)

 $D_F = \nabla F$ Lebesgue almost everywhere.

 \rightarrow Suspicion (true): convergence to $\{0 \in \partial^c F\}$ often happens.

Convergence to $\{0 \in D_F\}$ is unsatisfactory. We may have artificial critical points:



Theorem, Bolte & Pauwels (2020)

 $D_F = \nabla F$ Lebesgue almost everywhere.

 \rightarrow Suspicion (true): convergence to $\{0 \in \partial^c F\}$ often happens.

There exists $\Gamma \subset \mathbb{R}$, $W \subset \mathbb{R}^p$ "big" such that if $\{\alpha_k\}_{k \in \mathbb{N}} \subset \Gamma$, $w_0 \in W$,

$$w_{k+1} = w_k - \alpha_k (\nabla F(w_k) + \epsilon_k)$$

a.s., hence we have convergence to $\{0 \in \partial^c F\}$

How big?

- Bianchi, Hachem, Schechtman (2020): $s \sim P$, $f(\cdot, s) C^2$ a.e. (e.g. semigalgebraic, definable)

 Γ^c and W^c have zero Lebesgue measure,

How big?

- Bianchi, Hachem, Schechtman (2020): $s \sim P$, $f(\cdot, s) C^2$ a.e. (e.g. semigalgebraic, definable)

 Γ^c and W^c have zero Lebesgue measure,

Can we exploit the definability of f ?

- Bolte and Pauwels (2020): f definable, P finitely discrete.

 Γ^c is finite, W^c is a countable union of low dimensional manifolds.

- Bolte, L., Pauwels (2022): $F(w) = \mathbb{E}_{\xi \sim P}[f(w,\xi)]$, $P \ll \text{Lebesgue}$, f jointly definable.

 Γ^c is finite, W^c is a countable union of low dimensional manifolds.

Versatility of the ODE approach: analysis of stochastic heavy ball

Nonsmooth stochastic heavy ball

 $w_{k+1} = w_k - \alpha_k y_k$ $y_{k+1} \in \beta_k D(w_{k+1}, \xi_{k+1}) + (1 - \beta_k) y_k.$

for all $k \in \mathbb{N}$, $\alpha_k > 0$ and $\beta_k \in (0, 1)$.

Related works:

- Smooth setting: Gadat et al. (2018)
- Nonsmooth: Ruszczyński (2020), Bianchi & Rios-Zertuche (2021)

Versatility of the ODE approach: analysis of stochastic heavy ball

Limiting dynamical system:

$$\dot{w} \in -ry$$

 $\dot{y} \in D_F(w) - y.$

Lyapunov function:

$$E(w, y) = F(w) + \frac{r}{2} \|y\|^2$$

Stationary set:

 $\{0 \in D_F\} \times \{0\}$

Artificial points avoidance:

If for a.e. s, $f(\cdot, s)$ is definable, then there exists $W \subset \mathbb{R}^p \times \mathbb{R}^p$ of full measure such that if $(w_0, w_1) \in W$, "accumulation points" a belong to $\{0 \in \partial^c F\} \times \{0\}$

^aminimizing, essential, or all under Sard condition

- Clarke subdifferential doesn't come with a calculus, and can't explain machine learning practice. **Conservative derivatives** provide a justification to many implementations

- Clarke subdifferential doesn't come with a calculus, and can't explain machine learning practice. **Conservative derivatives** provide a justification to many implementations

- nonsmooth automatic differentiation,
- Implicit differentiation \rightarrow bi-level programming, optimization layers, implicit layers
- Differentiation under integral \rightarrow nonsmooth stochastic algorithms
- many other applications: value function, differentiation of ODE flows, monotone inclusion, iterative algorithms...

- Clarke subdifferential doesn't come with a calculus, and can't explain machine learning practice. **Conservative derivatives** provide a justification to many implementations

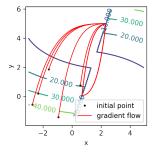
- nonsmooth automatic differentiation,
- Implicit differentiation \rightarrow bi-level programming, optimization layers, implicit layers
- Differentiation under integral \rightarrow nonsmooth stochastic algorithms
- many other applications: value function, differentiation of ODE flows, monotone inclusion, iterative algorithms...
- Chain rule along curves \rightarrow **ODE** approach \rightarrow convergence results.

- Clarke subdifferential doesn't come with a calculus, and can't explain machine learning practice. **Conservative derivatives** provide a justification to many implementations

- nonsmooth automatic differentiation,
- Implicit differentiation \rightarrow bi-level programming, optimization layers, implicit layers
- Differentiation under integral \rightarrow nonsmooth stochastic algorithms
- many other applications: value function, differentiation of ODE flows, monotone inclusion, iterative algorithms...
- Chain rule along curves \rightarrow **ODE** approach \rightarrow convergence results.
 - Convergence theory incomplete: Sard condition in stochastic optimization, complexity...
 - Algorithmic extensions: constraints, biased oracle; beyond vanishing stepsizes: adaptive algorithms; not i.i.d. samples, ...
 - Can we develop "nonsmooth-friendly" algorithms?

Thank you!

Pathological examples: cycles



$$\begin{split} \min_{x,y,s} \quad & \ell(x,y,s) := (x-s_1)^2 + 4(y-s_2)^2 \\ \text{s.t.} \quad & s \in s(x,y) := \arg\max\left\{(a+b)(-3x+y+2): \ a \in [0,3], b \in [0,5]\right\}. \end{split}$$

Pathological examples: lorenz attractor

$$\max_{u \in \mathbb{R}^3} \quad u^{\mathsf{T}}z \qquad \text{s.t.} \qquad z \in \underset{s \in \mathbb{R}^3}{\arg\min} \|s - F(u)\|^4$$

 ${\cal F}$ is Lorenz attractor vector field.

Optimality condition of the subproblem: $||s - F(u)||^3(s - F(u)) = 0$. Very qualitative explanation: The "gradient" of $u^T z$ is

$$z(u) + \widehat{\operatorname{Jac}} z(u)u$$

Jac is provided using the pseudo-inverse in the implicit differentiation formula, equal to zero. z(u) = F(u). Finally, gradient ascent is approximately the Lorenz attractor.

Counterexample to a potential Clarke integral rule.

Let $f: (w, s) \mapsto s|w|$ and $P = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$ or P is the uniform density on [-1, 1]. Then if $F(w) := \int_{[-1,1]} f(w, s) dP(s)$, one has $\partial^c F(w) = 0$ for all $w \in \mathbb{R}$, but $\mathbb{E}_{\xi \sim P}[\partial_w^c f(0, \xi)] = [-1, 1]$.

Counterexample to a potential "Clarke implicit differentiation" Let $\Psi=\Phi^{-1}$

$$\Phi(x, y) = (|x| + y, 2x + |y|)$$

Implicit differentiation on $(u,v) \rightarrow u - \Psi(v)$ gives

 $[\operatorname{Jac}^{c} \Psi(0)]^{-1} \not\subset [\operatorname{Jac}^{c} \Phi(0)]$

Let $F:\mathbb{R}^p\to\mathbb{R}$ locally Lipschitz, D_F is a semismooth generalized gradient if

 $F(y) = f(x) + \langle v, y - x \rangle + o(\|x - y\|) \text{ as } y \to x, \text{ for all } v \in D_F(y).$

Asymptotic descent lemma (Ermoliev, Norkin 1998)

Let (w_k) generated by SGD, assume [...]. Let w^* be an accumulation point such that $0 \notin D_F(w^*)$, $(w_{i_k})_{k \in \mathbb{N}}$ a subsequence converging to w^* .

Then for any $\epsilon > 0$, there exists a subsequence $(w_{l_k})_{k \in \mathbb{N}}$ such that $||w_k - w^*|| \le \epsilon$ for all $k \in [i_k, l_k)$, and

$$\limsup_{k} F(w_{l_k}) < F(w^*)$$

Definition (o-minimal structure)

Let $\mathcal{O} = (\mathcal{O}_p)_{p \in \mathbb{N}}$ be a collection of sets such that, for all $p \in \mathbb{N}$, \mathcal{O}_p is a set of subsets of \mathbb{R}^p . \mathcal{O} is an o-minimal structure on $(\mathbb{R}, +, \cdot)$ if it satisfies the following axioms, for all $p \in \mathbb{N}$:

1. \mathcal{O}_p is stable by finite intersection, union, and complementation, and contains \mathbb{R}^p .

- 2. If $A \in \mathcal{O}_p$ then $A \times \mathbb{R}$ and $\mathbb{R} \times A$ belong to \mathcal{O}_{p+1} .
- 3. If $A \in \mathcal{O}_{p+1}$ then $\pi(A) \in \mathcal{O}_p$, where π projects on the p first coordinates,.
- 4. \mathcal{O}_p contains all sets of the form $\{x \in \mathbb{R}^p : P(x) = 0\}$, where P is a polynomial.
- 5. The elements of \mathcal{O}_1 are exactly the finite unions of intervals.