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Nonsmooth optimization in machine learning

Many machine learning problems cast into an optimization problem.

Minimize F(w)

wERP

First-order methods, e.g. gradient method are really popular

W41 = WE — ak(VF(wk) + Ek)

® Automatic differentiation libraries (Pytorch, Tensorflow, JAX)
® Can be adapted to handle massive training sets (Stochastic algorithms)
e Computational power (GPU)

Observation: In many practical situations, F' is nonconvex and nonsmooth.
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Example 1: neural networks

Supervised learning.

Minimize E(, ,)pld(h(w,z),y)]

wERP

prediction task h(w,x) ~y
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Example 1: neural networks

Supervised learning.

Miimize Byl )

prediction task h(w,z) =~y 10

-100 -75 =50 -25 00 25 5.0 75 10.0

Neural networks. In deep learning, predictions are built upon multiple
compositions.

h(wm) = O’L(ALULfl(ALfl .. (TQ(AQO’l(Alx =+ bl) + bg) +br_1.. ) =+ bL)
w = (Al,AQ...AL,bl,...,bL).
many applications: image classification, speech recognition, language prediction...
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Example 1: neural networks

The o; are nonlinear and often nonsmooth functions:
ReLU function

y = reLU(z)
xz ifx>0
relU(z) = { 0 ifz<0
I z
nonsmooth at 0.
MaxPooling
3 1 13 8
. 7 20 6 2 20 13
MaxPooling v 3 5 4 = {7 5} .
6 2 1 5

max function is nonsmooth when components are equal.
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Example 2: Bi-level optimization

Minimize F(w,z) s.t. z € argmin g(w, ).
weRP oeC

Studied beforehand in economics game theory (Stackelberg, 1952), optimization (Bracken and
McGill (1973), Dempe, Ye...).
Renewed interest in machine learning:
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Example 2: Bi-level optimization

Minimize F(w,z) s.t. z € argmin g(w, 0).
wERP pec

Studied beforehand in economics game theory (Stackelberg, 1952), optimization (Bracken and
McGill (1973), Dempe, Ye...).
Renewed interest in machine learning:

® QOptimization layers, Amos & Kolter 2017.

X

z € argmingce g(w, z,0) ——

® Hyperparameter optimization: Bengio 2000; Do et al. 2007; Bertrand et al. 2020
Example of the lasso:

Mini/r\nize Criterion(8()))

s.t. B(\) € argmin | X3 — Y2 + M| B])1-
BERP
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Solution paths are often nonsmooth

LASSO path () is piecewise linear.

LASSO Path

0.4

S1U3IDIY30D

|coef| / max|coef|
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Outline

Observation: a gap between the classical theory in nonsmooth opt. vs practice in
ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.

- The classical theory for nonsmooth functions (Clarke subgradient) doesn't
explain this practice.
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ML

- First-order methods, “gradient methods” are used on nonsmooth functions in
practice, thanks to automatic differentiation libraries.

- The classical theory for nonsmooth functions (Clarke subgradient) doesn't
explain this practice.

Solution: Nonsmooth calculus with Conservative derivatives
We focus on generalized derivatives called Conservative derivatives, which

justifies automatic differentiation.

We propose two extensions

o Differentiation under nonsmooth expectation — stochastic methods.

® Nonsmooth Implicit differentiation — gradient methods for bi-level problems.

Output: Analysis of nonsmooth first-order algorithms.

Using ODE approaches, we show the convergence of nonsmooth stochastic

optimization algorithms as implemented in practice.
7/37



Outline

@ Nonsmooth optimization: classical theory and practice in ML

® Nonsmooth calculus with Conservative derivatives

© Analysis of nonsmooth first-order algorithms
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@ Nonsmooth optimization: classical theory and practice in ML
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A glance at the differentiable setting

Gradient method
W41 = W — akVF(wk)
® —VF generates descent trajectories, F' decreases along the gradient curves
w=—VF(w).

— Gradient method as ODE discretization.

® VF can be computed by calculus rules: V(f +g) =Vf+ Vg,
Jac(uowv) = (Jacuowv)Jacw ...

What if ' is nonsmooth?
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The Clarke subgradient: gradient for nonsmooth functions

Let F: R™ — R locally Lipschitz, differentiable on diff  of full Lebesgue measure.

Clarke subgradient 0°¢

O°F(x) = COIIV{ lim VF(zy):ap €diffp,zp,  — x}
k—+oco k— 400

(extends to Jacobians)
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The Clarke subgradient: gradient for nonsmooth functions

Let F: R™ — R locally Lipschitz, differentiable on diff  of full Lebesgue measure.

Clarke subgradient 0°¢

0°F(z) = COI’IV{ lim VF(zy):z, € diffp, 2, — x}
k—+oco k— 400

(extends to Jacobians)

.7‘61 Y - Ty T
O0°F is graph-closed, locally bounded, convex-valued.
— existence of the continuous dynamic & € —0°F(z).

— subgradient method wy41 € wy — a0°F(wy) as ODE discretization.
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Path-differentiable functions

Do we have descent along ¥ € —9°F(v)?

Not in general. There exist Lipschitz functions F such that 9°F = B(0,1)
everywhere.
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Path-differentiable functions

Do we have descent along ¥ € —9°F(v)?

Not in general. There exist Lipschitz functions F' such that 9°F = B(0,1)
everywhere.

Path differentiability, Valadier 1989

Let F locally Lipschitz. F' is called path-differentiable if for all absolutely
continuous curve v : [0, 1] — RP, for almost all ¢ € [0, 1]

SFom(®) = (A0, Yo dFH).

— enforces descent along the curves ¥ € —9°F(y):
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Path-differentiable functions

How “generic” is the class of path-differentiable functions?
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Path-differentiable functions

How “generic” is the class of path-differentiable functions?

— Path differentiable functions are ubiquitous in practice.

e Convex functions (Brézis, 1973)

® Semialgebraic (~ piecewise
polynomial), definable functions,
(Davis et al., 2019).

® Definable functions: functions
written as compositions involving
elementary functions
(if, else, +, -, X, exp, log)
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Path-differentiable functions

How “generic” is the class of path-differentiable functions?

— Path differentiable functions are ubiquitous in practice.

e Convex functions (Brézis, 1973)

® Semialgebraic (~ piecewise
polynomial), definable functions,
(Davis et al., 2019).

® Definable functions: functions
written as compositions involving
elementary functions
(if, else, +, -, X, exp, log)

V\M@)§¥®M3€@)

Projection formula, Bolte et al. 2007
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Concerns
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Concerns

® The Clarke subgradient provides descent for path-differentiable functions.

— Can we easily compute elements of the Clarke subgradient? Does
automatic differentiation output Clarke subgradients?

® Definable functions: functions implemented in practice are path-differentiable.

— What can we say about expectation minimization
F(w) = Eeoplf(w,§)]?
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What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

if
relu(z) = {x, >0 —  relu/(z) = {

0, else. autodiff

1, ifz>0
0, else.

15/37



What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

if
relu(z) = {x, >0 —  relu/(z) = {

1, ifz>0

0, else. autodiff 0, else.

How about compositions, e.g. neural nets?

15/37



What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

if
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0, else. autodiff 0, else.

How about compositions, e.g. neural nets?
Automatic differentiation applies the chain rule on Clarke derivatives.
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What is automatic differentiation?

Auto-differentiation libraries (PyTorch, Tensorflow) differentiate programs

if
relu(z) = {x, >0 —  relu/(z) = {

0, else. autodiff

1, ifz>0
0, else.

How about compositions, e.g. neural nets?

Automatic differentiation applies the chain rule on Clarke derivatives.

f(w):grogr—lo'-'ogl(w)

autodiff,, f(w) € 9°g,(gr_10...0g1(w))T

x Jac® gr_1(gr—20...0g1(w)) X ... x Jacy, g1(w).
But do calculus rules apply to Clarke derivatives?
No.
® (Sum rule) 9°(f +g) C 0°f + 0°.
® (Composition rule) Jac®(F o G) ¢ conv Jac® F(G) Jac® G,
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Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:
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Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F' = E¢p[f(-,£)] we may
sample V., f(+,€), & ~ P to have a noisy estimate of

Eep[Vu f(+,6)] = VF (Differentiation under integral)

— Practice: f is nonsmooth, autodiff,, f(w, &) is sampled instead of V,, f(w,¢).
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Formal differentiation in machine learning.

Yet, autodiff is used extensively in machine learning:

Example 1. Stochastic methods. To minimize F' = E¢p[f(-,£)] we may
sample V., f(+,€), & ~ P to have a noisy estimate of

Eenp[Vuf(+,§)] =VF (Differentiation under integral)
— Practice: f is nonsmooth, autodiff,, f(w, &) is sampled instead of V,, f(w,¢).
Example 2. Implicit differentiation. H(z,y) = 0, H continuously

differentiable. How to differentiate y w.r.t. =7

-1
% _ _ {GH} OH (Implicit differentiation)

dr  |dy| Ox

— Practice: H nonsmooth (e.g. optimality conditions). OH is replaced by
autodiff H.

16/37



® Nonsmooth calculus with Conservative derivatives
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Conservative gradients, Bolte & Pauwels (2021)

Let F': R™ — R locally Lipschitz, and a set-valued map D : R™" = R",
D is a conservative gradient for F' if

- It generates descent trajectories

For all absolutely continuous curve
~v:[0,1] — R™,

S(For)(t) = (A1), W € Dl(1),

for almost all ¢ € [0, 1].
(extends to Jacobians)

F' decreases along 4 € —D(7)
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Conservative gradients, Bolte & Pauwels (2021)

Let F: R™ — R locally Lipschitz, and a set-valued map D : R" = R",

D is a conservative gradient for F' if

- It generates descent trajectories

For all absolutely continuous curve
7:[0,1] = R™,

S(For)(t) = (w41, W € D(y(1),

for almost all ¢ € [0, 1].
(extends to Jacobians)

N

"

VFp(z) = PrOj,A\/t D(z

F decreases along ¥ € —D(7)

- Existence of the flow 4 € —D(y):

D is graph-closed, nonempty (convex) valued, locally bounded.
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Conservative calculus

- 0°F is the minimal conservative gradient: if 3D g conservative, then F' is path
differentiable.
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Conservative calculus

- 0°F is the minimal conservative gradient: if 3D g conservative, then F' is path
differentiable.

- Sum rule Let Dy, D, be conservative gradients for f and g, Dy 4 Dy is
conservative gradient for f + g.

- Chain rule Let J,, J, be conservative Jacobians for v and v. J,(v)J, is
conservative Jacobian for u o v. — automatic differentiation outputs conservative
Jacobians.

Two extensions to conservative calculus.
1. Implicit differentiation. Given
F(z,y) =0

where F' is nonsmooth, how to “differentiate” y with respect to 7
— differentiating solutions path.

2. Integral rule. “differentiating” under integral/expectation F' = E¢p[f(-,§)]

— nonsmooth stochastic methods.
19/37



1. The Implicit Function Theorem (Cauchy)

F(z,y) =2 +y* -1

}7(37a11) =0

[

A Y

=Y
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1. The Implicit Function Theorem (Cauchy)

Existence and regularity.

F(x7y) =0
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1. The Implicit Function Theorem (Cauchy)

Existence and regularity.
Let F: R™ x R™ — R™ continuously
differentiable and (&, ) such that

and 85 (2,9) is invertible

Then there exists a neighborhood U
containing &, and a unique continuously
differentiable function G : U — R™,
verifying for all z € U

F(z,G(z)) = 0.

20/37



1. The (smooth) Implicit Differentiation formula
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1. The (smooth) Implicit Differentiation formula

F(2,G(2)) = 0

Differentiating the equality on U leads to the implicit differentiation formula

oG . oF 1 ‘or .
E(m) = - [a_y(xay)] %("Evy)'
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1. Nonsmooth Implicit Function Theorem (Clarke, 1976)

Existence and regularity. Flz,y) =0

Let F': R™ x R™ — R™ be locally
Lipschitz

5
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1. Nonsmooth Implicit Function Theorem (Clarke, 1976)

Existence and regularity.
Let F': R® x R™ — R™ be locally
Lipschitz and (&, 3) € R™ x R™ such
that

F(&,9) =0.
If, V[A B] € Jac® F(Z,y) with
A e R™*" B e R™*™ B is invertible,
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Lipschitz and (&, 9) € R™ x R™ such
that
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If, V[A B] € Jac® F(&,9) with

A e R™*" B e R™*™ B is invertible,
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1. Nonsmooth implicit differentiation

Nonsmooth implicit differentiation, Bolte, L., Pauwels, Silveti-Falls (2021)

Assume inplace that F is path-differentiable (semi-alg.). Then G is
path-differentiable and

Ja(z) = {~B~'A| [A B] € Jac® F(z, G(z))}

is a conservative Jacobian for G.

23/37



lllustrative example: lasso hyperparameter optimization

Lasso hyperparameter tuning
Mini/r\’nize C(B(N)
st. B(\) € argmin | X8 — Y||? + e8]
BERP

Let's apply nonsmooth implicit differentiation to 5(\):
1. Implicit relation between 5 and A\ = optimality condition:

F(B,A) = 8 — prox,.,(B— ' XT(XB-Y)) =0

24 /37



lllustrative example: lasso hyperparameter optimization

Lasso hyperparameter tuning

Mini/r\'nize C(B(N)
s.t. B(\) € argmin | X8 — Y||2 + 8]
BERP

Let's apply nonsmooth implicit differentiation to 5(\):
1. Implicit relation between 5 and A\ = optimality condition:

F(B,A) = 8 — prox,.,(B— ' XT(XB-Y)) =0

2. Uniqueness/invertibility assumption: (Osborne et al. 2000; Mairal, Yu 2012)

=N}

Define the equicorrelation set £ := {j € {1,...,p} : | X] (y — XB(\N)
and assume XZ X¢ has full rank

Then: nonsmooth implicit differentiation applies to F'.

24/37



Invertibility condition is essential to satisfy: otherwise it can give really
pathological training dynamics!

initial point
= —— gradient flow

-2 0 2 4

Other applications
e Differentiating through cone programs

® |mplicit layers, Deep equilibrium networks

z=0cWz+b+Uzx)

25 /37



2. Integral rule

Stochastic minimization
Consider

F(w) :=Eeup[f(+ )]
Under mild conditions, one can differentiate under E:
VF =E¢p[Vu f(+,8)]

First-order sampling: Sample £ ~ P, V,, f(w,§) ~ VF(w)
— Stochastic gradient method: wy11 = wi — @V, f (Wi, &)

26 /37



2. Integral rule

Stochastic minimization
Consider

F(w) :=Eeop[f(-€)]

Under mild conditions, one can differentiate under E:

VF = E¢p[Vuw f(+ )]

First-order sampling: Sample £ ~ P, V,, f(w,§) ~ VF(w)
— Stochastic gradient method: wy11 = wi — @V, f (Wi, &)

In practice, f(+,&) is nonsmooth, and

OF C Eenpl0,f(+,€)]

But we have access to a conservative gradient of f(-,&), D(-,§), e.g., autodiff.

Question: What is the expectation E¢.p[D(-,§)]?

26 /37



2. Nonsmooth Integral rule

Theorem (Bolte, L., Pauwels 2022)

If D(-,&) is conservative gradient for f(-,£), then E¢.p[D(-,£)] is a conservative
gradient for F.

27 /37



2. Nonsmooth Integral rule

Theorem (Bolte, L., Pauwels 2022)

If D(-,&) is conservative gradient for f(-,£), then E¢.p[D(-,£)] is a conservative
gradient for F.

Assumptions:

1. (Measurability assumptions) . ..

2. (Boundedness assumption) For all compact subset C' C R?, there exists an integrable function
kS — R such that for all

(z,5) € C xS, ||[D(z,s)|| < r(s)
where for (z,s) € RP x S, ||D(z,s)|| := sup |yl
yED(x,s)
Main outcomes:

® Justifies first-order sampling in practical implementations: e.g. autodiff or
implicit differentiation.

® F'is path-differentiable, under simple assumptions.
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© Analysis of nonsmooth first-order algorithms
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Nonsmooth Stochastic Gradient method in practical
implementations

We consider the problem
Minimize F(w) :=E¢op[f(w,§)],
weRP

We study a nonsmooth stochastic gradient method

Wet1 € Wy — axD(wy, &).

(1)

For £ € R™, D(-,&) is a conservative gradient for f(-,£) — encompasses practical

calculus: autodiff, implicit differentiation in the nonsmooth setting
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Nonsmooth Stochastic Gradient method in practical
implementations

We consider the problem
Minimize F(w) :=E¢op[f(w,§)],
weRP

We study a nonsmooth stochastic gradient method

Wet1 € Wy — axD(wy, &). (1)

For £ € R™, D(-,&) is a conservative gradient for f(-,£) — encompasses practical
calculus: autodiff, implicit differentiation in the nonsmooth setting

Integral rule: (1) writes

Wrt1 € Wi — o (Dp(wy) + €),

where Dp = E¢.p[D(-,§)] is conservative gradient for F', ¢}, has zero conditional

mean w.r.t. wg.
29/37



The ODE approach

Studying algorithms as ODE discretizations:

W41 — Wk

= —Dp(wy) + €x s ¥ € —Dr(y) (2)
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The ODE approach

Studying algorithms as ODE discretizations:

S = De(w) ta = 4€-Dr(y) (2)
Interpolated process w:
W
.. ‘ e ®
. v,

Asymptotic pseudo trajectory Benaim (1999), Benaim-Hofbauer-Sorin (2005)

w : Ry — RP is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim inf sup |lw(t+s)—~(s)|| =0.

t—o0 v solution o [0,T)
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The ODE approach

Studying algorithms as ODE discretizations:

S = De(w) ta = 4€-Dr(y) (2)
Interpolated process w:
W
.. ‘ e ®
. v,

w : Ry — RP is an asymptotic pseudo trajectory (APT) if for all T > 0,

lim inf sup |lw(t+s)—~(s)|| =0.

t—o0 v solution o [0,T)

e €D o
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Convergence results

F decreases along 4 € —Dp(7) (conservative gradient) + w is APT
= asymptotic descent.

® (wg)ken bounded a.s.
® a;p>0, > ap=00, > a2 <o
® || D(w,s)|| < k(s)¥(w), K square integrable, ¢ locally bounded.

Convergence results

® Ermoliev, Norkin (1998), Benaim, Hofbauer, Sorin (2005): accumulation
points w* s.t. liminf,_, . F(wy) = F(w*) satisfies 0 € Dp(w*)

® Bianchi, Rios-Zertuche (2021): essential accumulation points w* satisfy
0 € Dp(w*).
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Convergence results

F decreases along 4 € —Dp(7) (conservative gradient) + w is APT
= asymptotic descent.

Assumptions
® (wg)ken bounded a.s.
® a;p>0, > ap=00, > a2 <o
® || D(w,s)|| < k(s)¥(w), K square integrable, ¢ locally bounded.

Convergence results

® Ermoliev, Norkin (1998), Benaim, Hofbauer, Sorin (2005): accumulation
points w* s.t. liminf,_, . F(wy) = F(w*) satisfies 0 € Dp(w*)

® Bianchi, Rios-Zertuche (2021): essential accumulation points w* satisfy
0 € Dp(w*).

Essential accumulation point w* satisfies for all open U > w*,

. Z?fo a;ly,cu
limsup == ——— >0

k—o0 D ico Qi
Proportion of time spent around w* 31/37
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Sard condition

Furthermore, if

Sard condition
The set of critical values, {F(w) : 0 € Dp(w)} has empty interior.

Quite restrictive: holds if F' and Dy are semialgebraic (definable):
® P finite support
® P < Lebesgue with semialgebraic density.!

integration of constructible functions, Cluckers & Miller (2009)
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Furthermore, if

Sard condition
The set of critical values, {F(w) : 0 € Dp(w)} has empty interior.

Quite restrictive: holds if F' and Dy are semialgebraic (definable):
® P finite support
® P < Lebesgue with semialgebraic density.!

Then

® F(wy) converges as k — 00
® Every accumulation point w* of (wg)ren satisfies 0 € D (w*).

integration of constructible functions, Cluckers & Miller (2009)
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Clarke criticality for “most” sequences

Convergence to {0 € Dy} is unsatisfactory. We may have artificial critical points:
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Clarke criticality for “most” sequences

Convergence to {0 € Dy} is unsatisfactory. We may have artificial critical points:

Theorem, Bolte & Pauwels (2020)

Dp = VF Lebesgue almost everywhere.

— Suspicion (true): convergence to {0 € 9°F'} often happens.

There exists I' C R, W C R? “big" such that if {ax}reny C T, wp € W,
Wiy1 = wg — ax(VE(wg) + €)

a.s., hence we have convergence to {0 € 9°F'}
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Clarke criticality for “most” sequences

How big?
- Bianchi, Hachem, Schechtman (2020): s ~ P, f(,s) C? a.e. (e.g.
semigalgebraic, definable)

I'® and W€ have zero Lebesgue measure,
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Clarke criticality for “most” sequences

How big?
- Bianchi, Hachem, Schechtman (2020): s ~ P, f(,s) C? a.e. (e.g.
semigalgebraic, definable)

I'® and W€ have zero Lebesgue measure,

Can we exploit the definability of f ?

- Bolte and Pauwels (2020): f definable, P finitely discrete.

I'¢ is finite, W€ is a countable union of low dimensional manifolds.

- Bolte, L., Pauwels (2022). F(w) = E¢op[f(w,§)], P < Lebesgue, f jointly
definable.

I'¢ is finite, W€ is a countable union of low dimensional manifolds.

34/37



Versatility of the ODE approach: analysis of stochastic heavy
ball

Nonsmooth stochastic heavy ball

Wi+1 =Wk — QYk

Yk+1 €6 D(Wr+1,Ek+1) + (1 — Br) Yk
forall k € N, a, > 0 and i € (0,1).

Related works:
— Smooth setting: Gadat et al. (2018)
— Nonsmooth: Ruszczynski (2020), Bianchi & Rios-Zertuche (2021)
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Versatility of the ODE approach: analysis of stochastic heavy
ball

Limiting dynamical system:

wE —TY
Yy e DF(’U)) — .

Lyapunov function:

B(w,y) = F(w) + 5[y

Stationary set:

{O € DF} X {0}

Avrtificial points avoidance:

If for a.e. s, f(:,s) is definable, then there exists W C RP x RP of full measure
such that if (wp,w;) € W, “accumulation points”’? belong to {0 € 9°F} x {0}

?minimizing, essential, or all under Sard condition
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Conclusion and perspectives

- Clarke subdifferential doesn't come with a calculus, and can’t explain machine
learning practice. Conservative derivatives provide a justification to many
implementations

37/37



Conclusion and perspectives

- Clarke subdifferential doesn't come with a calculus, and can’t explain machine
learning practice. Conservative derivatives provide a justification to many
implementations

® pnonsmooth automatic differentiation,
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® Differentiation under integral — nonsmooth stochastic algorithms

® many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...
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Conclusion and perspectives

- Clarke subdifferential doesn't come with a calculus, and can’t explain machine
learning practice. Conservative derivatives provide a justification to many
implementations

® pnonsmooth automatic differentiation,

® Implicit differentiation — bi-level programming, optimization layers,
implicit layers

® Differentiation under integral — nonsmooth stochastic algorithms

® many other applications: value function, differentiation of ODE flows,
monotone inclusion, iterative algorithms...

- Chain rule along curves — ODE approach — convergence results.

® Convergence theory incomplete: Sard condition in stochastic optimization,
complexity...

® Algorithmic extensions: constraints, biased oracle; beyond vanishing
stepsizes: adaptive algorithms; not i.i.d. samples, ...

® Can we develop “nonsmooth-friendly” algorithms?

Thank you!
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Pathological examples: cycles

initial point
—— gradient flow

-2 0 2 4
X

min  l(z,y,5) = (x — 51)% + 4(y — 52)°

T,Y,S

st. s€s(z,y):=argmax{(a+b)(-3z+y+2): a€l0,3,be][0,5]}.
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Pathological examples: lorenz attractor

max 'z s.t. z € argmin|/s — F(u)

I
u€R3 s€R3

F'is Lorenz attractor vector field.

Optimality condition of the subproblem: |s — F(u)||?>(s — F(u)) = 0.
Very qualitative explanation: The “gradient” of 7z is

z(u) + Jac z(u)u

Jac is provided using the pseudo-inverse in the implicit differentiation formula,
equal to zero. z(u) = F(u). Finally, gradient ascent is approximately the Lorenz

attractor.
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Failure of Clarke calculus

Counterexample to a potential Clarke integral rule.
Let f: (w, s) — s|w] and P 16_1 + %61 or P is the uniform density on [—1, 1].
Then if F(w f L 1 flw,s dP( ), one has 9°F(w) = 0 for all w € R, but

Ee~p[0;,f(0 5)] [~1,1].

Counterexample to a potential “Clarke implicit differentiation”
Let U = ¢!

O(z,y) = (2| +y, 22 + [y])

Implicit differentiation on (u,v) — u — ¥(v) gives

[Jac® (0)] 7! ¢ [Jac® ®(0)]
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Norkin semismooth gradient

Let F': R? — R locally Lipschitz, D is a semismooth generalized gradient if

Fy)=f(z)+ (v,y—z)+o(|z —y|) asy = =, for all v € Dr(y).

Asymptotic descent lemma (Ermoliev, Norkin 1998)

Let (wg) generated by SGD, assume [...]. Let w* be an accumulation point such
that 0 ¢ Dp(w*), (w;,)ken a subsequence converging to w*.

Then for any € > 0, there exists a subsequence (wj, )ken such that ||wg —w*|| < e
for all k € [ix, k), and

limsup F(wy,) < F(w")
k
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Definition: definable in an o-minimal structure

Definition (o-minimal structure)

Let O = (Op)pen be a collection of sets such that, for all p € N, O, is a set of
subsets of RP. O is an o-minimal structure on (R, +, -) if it satisfies the following
axioms, for all p € N:

1. O, is stable by finite intersection, union, and complementation, and contains
RP.

2. If Ac O, then A xR and R x A belong to Opy1.

3. If A€ Opqq then m(A) € O, where 7 projects on the p first coordinates,.

4. Oy contains all sets of the form {x € R? : P(x) = 0}, where P is a polynomial.
5. The elements of O; are exactly the finite unions of intervals.
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